
APPLICATION INTEGRATION 

CRITERIA AND OPTIONS 

 

What makes for good application integration? If integration needs were always the 

same, there would only be one integration style. Yet like any complex 

technological effort, application integration involves a range of considerations and 

consequences that should be taken into account for any integration opportunity. 

The first criterion is application integration itself. If you can develop a single, 

stand-alone application that doesn’t need to collaborate with any other 

applications, you can avoid the whole integration issue entirely. Realistically, 

though, even a simple enterprise has multiple applications, applications that need 

to work together to provide a unified experience for the enterprise’s employees, 

partners, and customers. 

The other main decision criteria are: 

Application coupling — Even integrated applications should minimize their 

dependencies on each other so that each can evolve without causing problems for 

the others. Tightly coupled applications make numerous assumptions about how 

the other applications work; when the applications change and break those 



assumptions, the integration breaks. The interface for integrating applications 

should be specific enough to implement useful functionality, but general enough to 

allow that implementation to change as needed. 

Integration simplicity — When integrating an application into an enterprise, 

developers should strive to minimize changing the application and minimize the 

amount of integration code needed. Yet changes and new code will usually be 

necessary to provide good integration functionality, and the approaches with the 

least impact on the application may not provide the best integration into the 

enterprise. 

Integration technology — Different integration techniques require varying 

amounts of specialized software and hardware. These special tools can be 

expensive, can lead to vendor lock-in, and increase the burden on developers to 

understand how to use the tools to integrate applications. 

Data format — Integrated applications must agree on the format of the data they 

exchange, or must have an intermediate traslator to unify applications that insist on 

different data formats. A related issue is data format evolution and 

extensibility—how the format can change over time and how that will affect the 

applications. 



Data timeliness — Integration should minimize the length of time between when 

one application decides to share some data and other applications have that data. 

Data should be exchanged frequently in small chunks, rather than waiting to 

exchange a large set of unrelated items. Applications should be informed as soon 

as shared data is ready for consumption. Latency in data sharing has to be factored 

into the integration design; the longer sharing can take, the more opportunity for 

shared data to become stale, and the more complex integration becomes. 

Data or functionality — Integrated applications may not want to simply share 

data, they may wish to share functionality such that each application can invoke 

the functionality in the others. Invoking functionality remotely can be difficult to 

achieve, and even though it may seem the same as invoking local functionality, it 

works quite differently, with significant consequences for how well the integration 

works. 

Asynchronicity — Computer processing is typically synchronous, such that a 

procedure waits while its subprocedure executes. It’s a given that the subprocedure 

is available when the procedure wants to invoke it. However, a procedure may not 

want to wait for the subprocedure to execute; it may want to invoke the 

subprocedure asynchronously, starting the subprocedure but then letting it execute 

in the background. This is especially true of integrated applications, where the 



remote application may not be running or the network may be unavailable—the 

source application may wish to simply make shared data available or log a request 

for a subprocedure call, but then go on to other work confident that the remote 

application will act sometime later. 

As you can see, there are several different criteria that must be considered when 

choosing and designing an integration approach. The question then becomes: 

Which integration approaches best address which of these criteria? 

Application Integration Options 

There’s more than one approach for integrating applications. Each approach 

addresses some of the integration criteria better than others. The various 

approaches can be summed up in four main integration styles: 

File Transfer — Have each application produce files of shared data for others to 

consume, and consume files that others have produced. 

Shared Database — Have the applications store the data they wish to share in a 

common database. 

Remote Procedure Invocation — Have each application expose some of its 

procedures so that they can be invoked remotely, and have applications invoke 

those to run behavior and exchange data. 

http://www.enterpriseintegrationpatterns.com/patterns/messaging/FileTransferIntegration.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/SharedDataBaseIntegration.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/EncapsulatedSynchronousIntegration.html


Messaging — Have each application connect to a common messaging system, and 

exchange data and invoke behavior using messages. 

Each of the patterns has the same problem statement—the need to integrate 

applications—and very similar contexts. What differentiates them is different 

forces searching for a more elegant solution. Each pattern builds on the last, 

looking for a more sophisticated approach to address the shortcomings of its 

predecessors. Thus the pattern order reflects an increasing order of sophistication. 

The trick is not to choose the one style to use always, but to choose the best style 

for a particular integration opportunity. Each style has its advantages and 

disadvantages. Two applications may integrate using multiple styles such that each 

point of integration takes advantage of the style that suits it best. Likewise, an 

application may use different styles to integrate with different applications, so as to 

choose the style that works best for the other application. Some integration 

approaches can best be viewed as a hybrid of multiple styles. An integration 

product or EAI middleware may employ a combination of styles, all of which are 

effectively hidden in the product’s implementation. 

 

Source: 

http://www.enterpriseintegrationpatterns.com/patterns/messaging/IntegrationStyles

Intro.html 

http://www.enterpriseintegrationpatterns.com/patterns/messaging/Messaging.html

