
A SYNCHRONOUS SOLUTION 

SPI works in a slightly different manner. It’s a “synchronous” data bus, which 

means that it uses separate lines for data and a “clock” that keeps both sides in 

perfect sync. The clock is an oscillating signal that tells the receiver exactly when 

to sample the bits on the data line. This could be the rising (low to high) or falling 

(high to low) edge of the clock signal; the datasheet will specify which one to use. 

When the receiver detects that edge, it will immediately look at the data line to 

read the next bit (see the arrows in the below diagram). Because the clock is sent 

along with the data, specifying the speed isn’t important, although devices will 

have a top speed at which they can operate (We’ll discuss choosing the proper 

clock edge and speed in a bit). 

 

https://dlnmh9ip6v2uc.cloudfront.net/assets/d/6/b/f/9/52ddb2d8ce395fad638b4567.png


One reason that SPI is so popular is that the receiving hardware can be a 

simple shift register. This is a much simpler (and cheaper!) piece of hardware than 

the full-up UART (Universal Asynchronous Receiver / Transmitter) that 

asynchronous serial requires. 

Programming for SPI 

Many microcontrollers have built-in SPI peripherals that handle all the details of 

sending and receiving data, and can do so at very high speeds. The SPI protocol is 

also simple enough that you (yes, you!) can write your own routines to manipulate 

the I/O lines in the proper sequence to transfer data. (A good example is on 

the Wikipedia SPI page.) 

If you’re using an Arduino, there are two ways you can communicate with SPI 

devices: 

1. You can use the shiftIn() and shiftOut() commands. These are software-

based commands that will work on any group of pins, but will be somewhat 

slow. 

2. Or you can use the SPI Library, which takes advantage of the SPI hardware 

built into the microcontroller. This is vastly faster than the above commands, 

but it will only work on certain pins. 

https://www.sparkfun.com/products/733
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://arduino.cc/en/Reference/ShiftIn
http://arduino.cc/en/Reference/ShiftOut
http://arduino.cc/en/Reference/SPI


You will need to select some options when setting up your interface. These options 

must match those of the device you’re talking to; check the device’s datasheet to 

see what it requires. 

 The interface can send data with the most-significant bit (MSB) first, or 

least-significant bit (LSB) first. In the Arduino SPI library, this is controlled 

by the setBitOrder() function. 

 The slave will read the data on either the rising edge or the falling edge of 

the clock pulse. Additionally, the clock can be considered “idle” when it is 

high or low. In the Arduino SPI library, both of these options are controlled 

by the setDataMode() function. 

 SPI can operate at extremely high speeds (millions of bytes per second), 

which may be too fast for some devices. To accommodate such devices, you 

can adjust the data rate. In the Arduino SPI library, the speed is set by 

the setClockDivider() function, which divides the master clock (16MHz on 

most Arduinos) down to a frequency between 8MHz (/2) and 125kHz (/128). 

 

 

 

http://arduino.cc/en/Reference/SPISetBitOrder
http://arduino.cc/en/Reference/SPISetDataMode
http://arduino.cc/en/Reference/SPISetClockDivider


 If you’re using the SPI Library, you must use the provided SCK, MOSI and 

MISO pins, as the hardware is hardwired to those pins. There is also a 

dedicated SS pin that you can use (which must, at least, be set to an output in 

order for the SPI hardware to function), but note that you can use any other 

available output pin(s) for SS to your slave device(s) as well. 

 On older Arduinos, you’ll need to control the SS pin(s) yourself, making one 

of them low before your data transfer and high afterward. Newer Arduinos 

such as the Due can control each SS pin automatically as part of the data 

transfer; see the Due SPI documentation page for more information. 

 

 

 

Source: https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi 

http://arduino.cc/en/Reference/DueExtendedSPI

