
A FEW GOOD APPS

Developer: Network team, did you order the Code upgrade?!

Operations Manager: You don‟t have to answer that question!

Network Engineer: I‟ll answer the question. You want answers?

Developer: I think I‟m entitled!

Network Engineer: You want answers?!

Developer: I want the truth!

Network Engineer: You can‟t handle the truth! Son, we live in a world that has

VLANs, and those VLANs have to be plumbed by people with CLIs. Who‟s gonna

do it? You? You, Database Admin? I have a greater responsibility than you can

possibly fathom. You weep for app agility and you curse the network. You have

that luxury. You have the luxury of not knowing what I know, that network

plumbing, while tragically complex, delivers apps. And my existence, while

grotesque and incomprehensible to you, delivers apps! You don‟t want the truth,

because deep down in places you don‟t talk about at parties, you want me on that

CLI. You need me on that CLI. We use words like “routing”, “subnets”, “L4

Ports”. We use these words as the backbone of a life spent building networks. You

use them as a punch line. I have neither the time nor the inclination to explain

myself to a man who rises and sleeps under the blanket of infrastructure that I

provide, and then questions the manner in which I provide it! I would rather you

just said “thank you”, and went on your way. Otherwise, I suggest you pick up a

putty session, and configure a switch. Either way, I don‟t give a damn what you

think you are entitled to!

Developer: Did you order the Code upgrade?

Network Engineer: I did the job that—-

Developer: Did you order the Code upgrade?!!

Network Engineer: YOU‟RE GODDAMN RIGHT I DID!!

In many IT environments today there is a distinct line between the application

developers/owners and the infrastructure teams that are responsible for deploying

those applications. These organizational silos lead to tension, lack of agility and

other issues. Much of this is caused by the translation between these teams.

Application teams speak in terms like: objects, attributes, provider, consumer, etc.

Infrastructure teams speak in memory, CPU, VLAN, subnets, ports. This is

exacerbated when delivering apps over the network, which requires connectivity,

security, load-balancing etc. On today‟s network devices (virtual or physical) the

application must be identified based on Layer 3 addressing and L4 information.

This means the app team must be able to describe components or tiers of an app in

those terms (which are foreign to them.) This slows down the deployment of

applications and induces problems with tight controls, security, etc. I‟ve tried to

describe this in the graphic below (for people who don‟t read good and want to

learn to do networking things good too.)

As shown in the graphic, the definition of an application and its actual instantiation

onto networking devices (virtual and physical) is very different. This causes a

great deal of the slowed application adoption and the complexity of networking.

Today‟s networks don‟t have an application centric methodology for describing

applications and their requirements. The same can be said for emerging SDN

solutions. The two most common examples of SDN today are OpenFlow and

Network Virtualization. OpenFlow simply attempts to centralize a control plane

that was designed to be distributed for scale and flexibility. In doing so it uses 5-

tuple matches of IP and TCP/UDP headers to attempt to identify applications as

http://www.definethecloud.net/wp-content/uploads/2013/12/image.png

network flows. This is no different from the model in use today. Network

virtualization faithfully replicates today‟s network constructs into a hypervisor,

shifting management and adding software layers without solving any of the

underlying problem.

What‟s needed is a common language for the infrastructure teams and development

teams to use. that common language can be used to describe application

connectivity and policy requirements in a way that makes sense to separate parts of

the organization and business. Cisco Application Centric Infrastructure (ACI) uses

policy as this common language, and deploys the logical definition of policy onto

the network automatically.

Cisco ACI bases network provisioning on the application and the two things

required for application delivery: connectivity and policy. By connectivity we‟re

describing what group of objects is allowed to connect to other groups of objects.

We are not defining forwarding, as forwarding is handled separately using proven

methods, in this case ISIS with a distributed control plane. When we describe

connectivity we simply mean allowing the connection. Policy is a broader term,

and very important to the discussion. Policy is all of the requirements for an

application: SLAs, QoS, Security, L4-7 services etc. Policy within ACI is

designed using reusable „contracts.‟ This way policy can be designed in advance

by the experts and architects with that skill set and then reused whenever required

for a new application roll-out.

Applications are deployed on the ACI fabric using an Application Network Profile.

An application network profile is simply a logical template for the design and

deployment of an applications end-to-end connectivity and policy requirements. If

you‟re familiar with Cisco UCS it‟s a very similar concept to the UCS Service

Profile. One of the biggest benefits of an Application Network profile is its

portability. They can be built through the API, or GUI, downloaded from Cisco

Developer Network (CDN) or the ACI Github community, or provided by the

application vendor itself. They‟re simply an XML or JSON representation of the

end-to-end requirements for delivering an application. The graphic below shows

an application network profile.

http://www.definethecloud.net/wp-content/uploads/2013/12/image1.png

This model provides that common language that can be used by developer teams

and operations/infrastructure teams. To tie this back to the tongue-in-cheek start to

this post based on dialogue from “A Few Good Men”, we don‟t want to replace the

network engineer, but we do want to get them off of the CLI. Rather than hacking

away at repeatable tasks on the command line, we want them using the policy

model to define the policy „contracts‟ for use when deploying applications. At the

same time we want to give them better visibility into what the application requires

and what it‟s doing on the network. Rather than troubleshooting devices and

flows, why not look at application health? Rather than manually configuring QoS

based on devices, why not set it per application or tier? Rather than focusing on

VLANs and subnets as policy boundaries why not abstract that and group things

based on those policy requirements? Think about it, why should every aspect of a

servers policy change because you changed the IP? That‟s what happens on

today‟s networks.

Call it a DevOps tool, call it automation, call it what you will, ACI looks to use the

language of applications to provision the network dynamically and automatically.

Rather than simply providing better management tools for 15 year old concepts

that have been overloaded we focus on a new model: application connectivity and

policy.

Source: http://www.definethecloud.net/a-few-good-apps/

