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Abstract - System identification from the field obtained data is not successful till date because of the noise in the sensor or measured. 
The unknown system parameter for any unknown damage is still a long way to move.  In this paper finite element technique is 
applied on the simulated damaged structures. The damage detection for the noise free data is extended and tried for the random noisy 
sensor data. The proposed algorithm is used to predict the system parameter on static deflection data with introduction of some 
random noisy data using simulated structure. The developed algorithm is applied on bridge truss structure for the identification of the 
damaged system parameter prediction. 
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I. INTRODUCTION  

 The prediction of the damaged parameters from the 
field data having noise is still an open challenge in the 
field of structural identification. The Structural Health 
Monitoring (SHM) of large space structures like 
aerospace structure; satellite vehicles, where once the 
damage had occurred cause the uncertainty due to 
unknown damaged parameter. Finite element methods 
are universally accepted as fast computation tools for 
structural behavior prediction. Development in the field 
of computational technology and sensing instruments 
has also progressed a lot. Field data are usually noisy.  
The damage detection, location and damage extent 
prediction are among the important aspect of structural 
behavior prediction. The main aim of researchers is 
concentrated on the suitable identification algorithms 
based on uncertain available sensor data which may be 
linear or nonlinear, noisy or noise free sensor data.  

 There are two kinds of parameter identification 
namely static and dynamic parameter identification. In 
the dynamic parameter identification there are three 
unknowns. They are mass, stiffness and damping. The 
relationship between the dynamic coefficients (mass, 
stiffness and damping) and also its sensitivity effects of 
one property on another are still unknowns. Such a 
system makes the analysis very complicated. For 
uncertain damage with uncertain noisy data, no certain 
techniques are available. The static identification 

method seems to be better than dynamic identification 
as it is having only one unknown (stiffness).  

 A brief review on damage detection mainly using 
the static method or static combined with dynamic 
method is presented here. The static damage parameter 
identification approaches by the error term reduction 
includes minimum deviation, sensitivity analysis, output 
error optimization etc. were approached by [2] , [4], [7], 
[12], [14] and [15]. Damage detection in composite 
materials using system identification technique proposed 
by [14]. The output error approach of system 
identification was employed to determine the changes in 
the analytical model in order to minimize the distance 
between measured and predicted response. [2] Used 
force error estimator and displacement error estimator 
for static parameter grouping scheme to identify the 
error by least squares minimization.  Static strain 
measurement from multiple loading models for 
identification of the hole and cracks in linear anisotropy 
elastic materials with nonlinear optimization was 
presented by [4]. [15] applied a linear constrained 
nonlinear optimization problem using the minimization 
of error between the measured and computed 
displacement to find damage. 

 Error sensitivity analysis is found to be a popular 
method for finding the damage existence [9], [11], [13], 
[1.  On analyzing the sensitivity coefficients for natural 
frequency, mode shapes and modal flexibility, [9] found 
that modal flexibility is more sensitive as damage 
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indicator. Sensitivity with some other term approach 
like orthogonal sensitivity, non-linearity, modal 
updating were approached by[3], [16], [20] etc. The 
orthogonal condition sensitivities was developed by [16] 
for the damaged and undamaged structure mode shapes 
using FEM in laminated rectangular plate of composite 
structures. [20] presented a sensitivity-based finite 
element (FE) model updating for damage detection. The 
modal flexibility residual formulation and its gradient 
were used for formulation. The damage detection 
procedure was illustrated on a simulated example with 
noisy data and on a reinforced concrete beam model. 

 Dmage detection of cable-stayed bridges by 
changes in cable forces, was optimized on cable force 
error between measurement results and analytical model 
by [17]. [10] developed a method used  continuous 
strain data from fiber optic sensor and neural network 
model. [18] used sensitive characteristic of strain to 
identify damage in structures for strain-based damage 
identification. [8] Used conventional single-objective 
optimization approach defines the objective function by 
combining multiple error terms into a single one, for 
weaker constraint in solving the identification problem.  

 The above literature review indicates that both 
static as well dynamic methods were used in the system 
parameter prediction of structure using simulated, 
experimental and from the field data. Static methods 
used either strain or displacement as measured data, 
while in case of dynamic methods frequency and mode 
shapes data were used popularly. Sensitivity method, 
analyses the effect of parameter changes on the other 
parameters. When the structural parameters are 
unknown, the sensitivity analysis has no meaning. In 
addition, noise in the measured data may completely 
change the matrix property using matrix inversion. The 
structural parameter identification from the field data 
has no well-established solution, until now.  

 The paper is attributed to the static parameter 
identification process with the noisy sensor data. The 
objective of this paper is to develop a new modified 
approach for the noisy sensor data with few 
measurement.  The initial parameter identification 
algorithm has been taken from [13] but some noise were 
introduced in the sensor data. This will lead to near 
realistic field situation. Finite element method for 
damage detection using static test data for smaller 
subgroups of matrix was applied [3] for damage 
existence prediction with only few measurements. The 
noise values were varied between ± 4 % errors in the 

sensor data. A finite element model of bridge truss 
structure presented for the demonstration.   

II.  INITIAL AND DEDELOPED APPROACH 

 An algorithm to find the parameter extent for noise 
free data was developed by [13]. Assuming the structure 
behavior of structure is linear throughout the test, the 
force displacement relationship in the static case for 
undamaged structure is given by 

]][[][ UKF =                                              (1) 

and for damaged structure by                     

]][[][ UKF d=                                                    (2) 

Partitioning into measured and unmeasured 
displacements 

a daa dab a

b dab dbb b

f K K U
f K K U

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦                             (3) 

[ ] ][[ aaa Kf = – [ ]abK --1 [ ]bbK --1 [ ] ]abK  [ ]aU   

           +   [ ]abK [ ]bbK --1 [ ]bf                   (4) 

[ ]af  , [ ]bf  and [ ]aU  are measured from test. The 
difference between the measured and theoretically 
calculated value will be the error term. If the stiffness 
parameters are correct, then error matrix [ ])( pE  will 
be zero, otherwise non-zero.  

[ ])( pE   = ][[ aaK – [ ]abK --1 [ ]bbK --1 [ ] ]abK  [ ]aU  

+  [ ]abK [ ]bbK --1 [ ]bf  – [ ]af      (5) 

 [ ])( pE ≈ }{ )( pE + }{ )( pS δ [ ]pΔ                 (6) 

 The error sensitivity expression was calculated 
using first order Taylor series expansion of error matrix
[ ])( pE . The stiffness parameters were obtained by 
minimization of error function with respect to unknown 
parameter ( p) using the least square optimization.   

 The error sensitivity expression has been modified 
for noisy sensor data as the displacement gets modified 
due to sensor noise and unknown damaged. The 
unknown parameters become the function of both 
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displacements. The sensitivity matrix was recalculated 
with this new modified expression,   

. 
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 The present method is able to predict the damage 
existence in structure with only few measurements. 
Using least square optimization technique, all the 
unknown damaged parameters can be identified after 
some iteration successfully with the noisy sensor data. 
The finite element method revisited and a row-echelon 
form of matrix developed for damage detection using 
static displacement and force data, Dewangan U. K. 
(2010) [4]. The row-echelon form has an advantage of 
partitioning matrix into smaller subgroups.The noise 
values were varied between ± 4 % errors in the sensor 
data. A finite element model of bridge truss structure 
presented for the demonstration. The modified algorithm 
is implemented using MATLAB [21].  

III. EXAMPLES 

 Based on the algorithm discussed in the above 
section, the computer program was written in MATLAB 
and tested Bridge Truss Structure Bridge Truss Structure 

Structural Details: All elements are having the modulus 
of elasticity 210E GPa= and initial undamaged 

cross sectional area 5 21.61 10A X mm= . The 
structural configuration is shown in Fig. 3.8. A single  

 

 

concentrated load is applied at each joint. The 
deflections at each joint are measured. The force matrix 
[ ]F is found out and corresponding displacement 

matrix [ ]U  is measured.   

 For bridge truss structure, [1] as shown in Figure 1, 
the modulus of elasticity of all elements was 206.8 GPa 
and initial undamaged cross sectional area of all 
members was 500 mm2. The noise was introduced up to 
± 5 % error in the sensor data for sensor numbers 5, 6, 7 
and 8 displacement d.o.f. Different load combinations 
are considered and they are tabulated in the Table 2 with 
sensor noise value. Previously discussed algorithms 
were applied to this problem and results are given in 
Table 2 and Figure 4 for typical cases. For the noisy 
sensor data set combination on tower truss the computed 
parameter values were compared with the actual 
parameter value. From the plotted graph as shown in 
Figure 2, it is clear that with the noisy sensor data, [13]  
algorithm values are far away from the actual value of 
the parameter. The modified proposed  algorithm values 
are nearly close to the actual value of the parameters. 
The algorithm could identify the damage extent for 
members away from the supports.   

. 
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Figure 2 Railway bridge truss (Case 2) 
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Fig. 3 : Comparative study of damage extent prediction (Bridge truss Structure) 

TABLE I: RESULTS OF NOISY SENSOR DATA WITH MODIFIED ALGORITHM ON BRIDGE TRUSS 

Case Member 
damaged 

Applied 
force d.o.f. 

Measured 
displacement d.o.f. 

Noise in 
Sensor 

Members 
Converged 

Members 
Diverged 

1 All 1-20 1-20  8 up to 5% 1-4, 6-14, 17-20 5,16,15 and 21 
2 All 7-10, 17-20  7-10, 17-20  1- 8 up to 5% 1-4, 6-14, 17-20 5,16,15 and 21 
3 All 7-10, 17-20 1-4, 11-14 4 up to 5% 1-4, 6-14, 17-20 5,16,15 and 21 

4 All 1-20  1-20  5,6,7 and, 8 
up to 4% 1-4, 6-14, 17-20 5,16,15 and 21 

 .  

Fig. 1 : Railway bridge truss 
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IV. RESULTS 

 Considering the various multiple damaged member 
combinations, the existence of damage is detected.  

 Different combinations of force DOF and 
displacement DOF used are given in Table 1for various 
cases. 

 From the plotted graph as shown in Figure 4, it is 
clear that with the noisy sensor data, the modified 
proposed algorithm values are nearly close to the actual 
value of the parameters. The algorithm could identify 
the damage extent for members away from the supports.   

V.  DISCUSSION 

 In this study, it was clearly observed from the 
demonstrated examples that the modified algorithm 
could predict damage extent in the presence of noise in 
structural response. Further it was found that the 
algorithms failed to predict damage extent in the 
members, which were near to the support. Hence, the 
present work is very well justified for the large space 
structures where except the support connected members, 
all other members, damage extent could be predicted. 
The failure of the algorithm in identifying the damage 
extent in members near support is a matter of further 
investigation.  

VI. CONCLUSION 

 The damage parameter identification with the noisy 
sensor data was carried out for different random noise 
value. Algorithm developed by [13] has been modified 
for the noise in sensor value. Finite element method for 
damage detection using static test data for smaller 
subgroups of matrix was applied [3] for damage 
existence prediction with only few measurements. The 
noise values were varied between ± 4 % errors in the 
sensor data. The algorithm works well for lower noise 
level up to a value ± 4 % errors in the sensor data and 
the unknown damaged parameter could be extracted 
even from the noisy data set of structural response using 
above technique for the members with only few 
measurements.  Hence the algorithm is useful for 
damage prediction with noisy sensor data on large 
structures for the members, which are away from the 
supports. 

NOTATION 

d.o.f.  =  Degree of freedom 
d.d.o.f. =  Displacement degree of freedom 
f.d.o.f. =  Force degree of freedom 
{E(p)} = Error function vector 

[ Fa]  =  Applied force matrix at force d.o.f. at 
measured d.o.f. 

[Fb]  =  Unapplied force matrix at force d.o.f. for 
unmeasured displacement d.o.f. 

F.E.M.  =  Finite element method 
[K]   =  Undamaged global stiffness matrix 
[Kdaa]   =  Sub matrix of [K] corresponding to 

measured d.o.f. and applied force d.o.f. 
[Kdab]  =   Sub matrix of [K] corresponding to   

measured d.o.f. and unapplied force d.o.f. 
[Kdbb]  =    Sub matrix of [K] corresponding to 

unmeasured d.o.f. and unapplied force d.o.f. 
[Kdba]  =  Sub matrix of [K] corresponding to 

unmeasured d.o.f. and applied force d.o.f. 
[Kd]  =    Damaged global stiffness matrix 
n   =    Number of elements  
p  =    Unknown parameter’s values 
r   =    Row number 
[Sd]  =    Damaged global stiffness matrix 
[S]   =    Undamaged global stiffness matrix 
[Saa]  =    Sub matrix of [S] corresponding to 

measured d.o.f. and applied force d.o.f. 
[Sab] =    Sub matrix of [S] corresponding to 

measured d.o.f. and unapplied force d.o.f. 
[Sbb]  =    Sub matrix of [S] corresponding to 

unmeasured d.o.f. and unapplied force d.o.f. 
[Sba]  =    Sub matrix of [S] corresponding to 

unmeasured d.o.f. and applied force d.o.f. 
{S(p)} =    Sensitivity matrix 
[ U ]  =    Transformation matrix 
[Ua]  =     Measured displacements matrix 
[Ub]  =     Unmeasured displacements matrix 
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