PHOTOGRAMMETRIC SURVEY

Photogrammetric surveying or photogrammetry is the science and art of obtaining accurate measurements by use of photographs, for various purposes such as the construction of planimetric and topographic maps, classification of soils, interpretation of geology, acquisition of military intelligence and the preparation of composite pictures of the ground. The photographs are taken either from the air or from station on the ground. Terrestrial photogrammetry is that branch of photogrammetry wherein photographs are taken from a fixed position on or near the ground. Aerial photogrammetry is that branch of photogrammetry wherein the photographs are taken by a camera mounted in an aircraft flying over the area. Mapping from aerial photographs is the best mapping procedures yet developed for large projects, and are invaluable for military intelligence. The major users of aerial mapping methods are the civilian and military mapping agencies of the Government.

The conception of using photographs for purposes of measurement appears to have originated with the experiments of Aime Laussedat of the Corps of the French Army, who in 1851 produced the first measuring camera. He developed the mathematical analysis of photographs as perspective projections, thereby increasing their application to topography. Aerial photography from balloons probably began about 1858. Almost concurrently (1858), but independently of Laussedat, Meydenbauer in Germany carried out the first experiments in making critical measurements of architectural details by the intersection method in the basis of two photographs of the building. The ground photography was perfected in Canada by Capt. Deville, then Surveyor General of Canada in 1888. In Germany, most of the progress on the theoretical side was due to Hauck.

In 1901, Pulfrich in Jena introduced the stereoscopic principle of measurement and designed the stereo comparator. The stereoaitograph was designed (1909) at the Zeiss workshops in Jena, and this opened a wide field of practical application. Scheimpflug, an Australian captain, developed the idea of double projector in 1898. He originated the theory of perspective transformation and incorporated its principles in the photoperspectograph. He also gave the idea of radial triangulation. His work paved the way for the development of aerial surveying and aerial photogrammetry.
In 1875, Oscar Messter built the first aerial camera in Germany and J.W. Bagloy and A. Brock produced the first aerial cameras in U.S.A. In 1923, Bauersfeld designed the Zeiss stereoplanigraph. The optical industries of Germany, Switzerland, Italy and France, and later also those of the U.S.A and U.S.S.R. took up the manufacture and constant further development of the cameras and plotting instruments. In World War II, both the sides made extensive use of aerial photographs for their military operations. World War II gave rise to new developments of aerial photography techniques, such as the application of radio control to photoflight navigation, the new wide-angle lenses and devices to achieve true vertical photographs.

principles behind terrestrial photogrammetry.

The principle of terrestrial photogrammetry was improved upon and perfected by Capt. Deville, then Surveyor General of Canada in 1888. In terrestrial photogrammetry, photographs are taken with the camera supported on the ground. The photographs are taken by means of a photo theodolite which is a combination of a camera and a theodolite. Maps are then compiled from the photographs.

The principle underlying the method of terrestrial photogrammetry is exactly similar to that of plane table surveying, i.e. if the directions of same objects photographed from two extremities of measured base are known, their position can be located by the intersection of two rays to the same object. However, the difference between this and plane tabling is that more details are at once obtained from the photographs and their subsequent plotting etc. is done by the office while in plane tabling all the detailing is done in the field itself.

Thus in Fig , A and B are the two stations at the ends of base AB. The arrows indicate the directions of horizontal pointing (in plan) of the camera. For each pair of pictures taken from the two ends, the camera axis is kept parallel to each other. From economy and speed point of view, minimum number of photographs should be used to cover the whole area and to achieve this, it is essential to select the best positions of the camera stations. A thorough study of the area should be done from the existing maps, and a ground reconnaissance should be made. The selection of actual stations depends upon the size and ruggedness of the area to be
surveyed. The camera should be directed downward rather than upward, and the stations should be at the higher points on the area.

The terrestrial photogrammetry can be divided into two branches:

(i) Plane-table photogrammetry.
(ii) Terrestrial stereo photogrammetry

The plane table photogrammetry consists essentially in taking a photograph of the area to be mapped from each of the two or three stations. The photograph perpendiculare may be oriented at any angle to the base, but usually from an acute angle with the latter. The main difficulty arises in the identifications of image points in a pair of photographs. In the case of homogeneous areas of sand or grass, identification becomes impossible. The principles of stereo photogrammetry, however, produced the remedy.

In terrestrial stereo photogrammetry, due to considerable improvement of accuracy obtained by the stereoscopic measurement of pairs of photographs, the camera base and the angles of intersection of the datum rays to the points to be measured can be considerably reduced since the camera axes at the two stations exhibit great similarity to each other. The image points which are parallactically displaced relative to each other in the two photographs are fused to a single spatial image by the stereoscopic measurement.