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Abstract 
 
In this work a mathematical model for the consideration of deformation due to shearing forces in structural 
analysis was formulated. The stiffness matrix for a prismatic element taking shear deformation into account was 
developed. The force/load vectors for various cases of transversely loaded elements taking shear deformation 
into consideration were also formulated and these were presented in tables synonymous to the tables of ‘end 
forces due to unit end displacements’ and ‘fixed end moments on transversely loaded elements’ found in many 
structural analysis textbooks. These tables will enable an easy implementation of the effects of deformation due 
to shear forces in structural analysis when using the stiffness method. 
Keywords: Stiffness, shear deformation, degrees of freedom, prismatic members, modulus of elasticity in shear 
 
Introduction 
 
The analysis of indeterminate structures requires the writing of compatibility equations (equations for 
deformation) for selected points (nodes) in the structure (Nash, 1998; Gere, 2004). Known causes of 
deformation of the structure are the internal stresses: bending moment, shearing forces, axial forces and twisting 
moments (Ghali and Neville, 1996). Amongst these, deformation due to bending moment dominates (Hibbeler 
2006) and the deformations due to other stresses are very often ignored. For short and deep beams shear 
deformation is considerable and its consideration is necessary (Narayanan, 2007). However most classical 
methods of analysing structural frames eg slope deflection, moment distribution and clapeyron’s theorem ignore 
the deformation due to shear hence the need for a model to facilitate its easy integration into the normal 
processes of structural analysis in our manual calculations. 
 
Model 
 
The analysis of structures by the stiffness method involves the writing of equilibrium equations for the degrees 
of freedom (coordinates) of the structure (Jenkins, 1990). The equilibrium equation for the analysis of an 
element is given by ሾ݇ሿሼ݀ሽ ൌ ሼݍሽ . . . (1) 
Where [k] is the element stiffness matrix, it is a 12 x 12 matrix for a space element (elements that can deform in 
all three coordinate axes) and a 6 x 6 for a plane element (elements that deform in only one plane). {q} is the 
vector of external forces applied at any of the nodes and which coincide with one of the degrees of freedom for 
which the equilibrium equations were written. {d} is the vector of displacements at the coordinates or degrees of 
freedom of the element. 
When there is no external force on any of the degrees of freedom or coordinates equation (1) is rewritten as 
ሾ݇ሿሼ݀ሽ ൌ 0 .         .        .          .           .             .            (2) 
But for transversely loaded elements equation (1) is written as  ሼݍ௢ሽ ൅ ሾ݇ሿሼ݀ሽ ൌ ሼݍሽ .    .    .    (3) 
         (Leet and Unang, 2002) 
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where {qo} is the vector of reactive end forces on the transversely loaded element when displacements at its 
coordinates (degrees of freedom) are restrained. 
 
End Forces on Transversely Loaded Elements 
  
Here it will be illustrative to represent each coordinate (degree of freedom) with a number. This is shown in 
Figure 1(a) below. Figure 1(a) & (b) shows the 12 degrees of freedom of a space element and their 
representation with numbers. These numbers are used here for convenience. ‘1’ represents dxN ie the translation 
in the direction of the x axis at the near end ‘N’ and ‘2’ represents dyN ie the translation in the direction of the 
local y axis at the near end ‘N’. ‘11’ is θyF ie the rotation about the local y-axis at the far end and so on. 
Therefore  
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	. .         .         .       .         .     .   .      .   (4) 

Numbers 1 – 6 is at the near end ‘N’ while 7 – 12 are at the Far end ‘F’. 

MxN is the twisting moment at the near end ‘N’ 

MyN is the moment about the y axis at the near end 

FyN is the axial force in the direction of the y axis acting at the near end 

FxN is the axial force in the direction of the x axis acting at the near end etc 

The sign convention for the translations is positive when it points in the direction shown in Figure 1 while the 
rotations are positive when anticlockwise. 

For a space element 
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  .  .  .        (6) 
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Figure 4 

For a plane element 

If the plane element is lying in the xy plane (see Figure 2) and all the external loads on it act in the same plane 
then 

݀ଷ ൌ ݀ସ ൌ ݀ହ ൌ ݀ଽ ൌ ݀ଵ଴ ൌ ݀ଵଵ ൌ 0 
If the deformation in these coordinates is zero then the forces (or moments for rotations) in these coordinates 
will also be zero. 

ଷܨ ൌ ସܨ ൌ ହܨ ൌ ଽܨ ൌ ଵ଴ܨ ൌ ଵଵܨ ൌ 0 

௢ݍ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵܨ
ଶܨ
଺ܨ
଻ܨ
ܨ଼
ےଵଶܨ

ۑ
ۑ
ۑ
ۑ
ې

  .       .             .                 .                   .                  .                   .                    .   (7) 

ሾ݇ሿ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
݇ଵଵ				 ݇ଵଶ			 ݇ଵ଺
݇ଶଵ			 ݇ଶଶ			 ݇ଶ଺
݇଺ଵ			 ݇଺ଶ			 ݇଺଺

݇ଵ଻			 ݇ଵ଼			 ݇ଵ	ଵଶ
݇ଶ଻			 ݇ଶ଼			 ݇ଶ	ଵଶ
݇଺଻			 ݇଺଼			 ݇଺	ଵଶ

݇଻ଵ ݇଻ଶ ݇଻଺
଼݇ଵ ଼݇ଶ ଼݇଺
݇ଵଶ	ଵ ݇ଵଶ	ଶ ݇ଵଶ	଺

݇଻଻ ݇଻଼ ݇଻	ଵଶ
଼݇଻ ଼଼݇ ଼݇	ଵଶ
݇ଵଶ	଻ ݇ଵଶ	଼ ݇ଵଶ	ଵଶے

ۑ
ۑ
ۑ
ۑ
ې

 

  . .  .  .  .  .   (8) 
 
Consider the transversely loaded beam of Figure 3(a).  
Reducing it to a basic system (A system that is statically determinate and geometrically stable) 
 
 

 

 

X1 and X2 are the redundant forces and their directions of action are coordinates 1 and 2 respectively. The third 
redundant force (a horizontal force) was ignored because no axial force is expected. 
From the principle of virtual work, deformations can be calculated (ignoring axial deformation) using  

ܦ ൌ ׬
ெഥெ

ாூ
ݏ݀ ൅ ׬

௏ഥ௏

ீ஺ೝ
  ݏ݀ . .  .  .  .  .  (9) 

(Megson, 2005) 

Where ܣ௥ ൌ
஺

Յ
 

κ is a shape factor which depends on the shape of the member’s cross-section. 
Where ܯഥ, തܸ 	are the virtual internal stresses while M, V are the real/actual internal stresses. 
E is the modulus of elasticity of the structural material 
A is the cross-sectional area of the element 

G is the modulus of elasticity in shear, ܩ ൌ
ா

ଶሺଵା௩ሻ
  (Ugural and Fester,2003) where v is poisson’s ratio 

I is the moment of inertia of the section about the axis of bending. 
 
Using equation (9), d11 (ie deformation in coordinate 1 due to a unit force in coordinate 1) can be evaluated by 
integration or graphically using a structural engineering table to obtain 

݀ଵଵ ൌ
௥ܣܩଶܮ ൅ ܫܧ3
௥ܣܩܮܫܧ3

 

In like manner other influence cooefficients are evaluated 

݀ଵଶ ൌ
ܫܧ6 െ ௥ܣܩଶܮ
௥ܣܩܮܫܧ6

 

݀ଶଶ ൌ
௥ܣܩଶܮ ൅ ܫܧ3
௥ܣܩܮܫܧ3

 

 
The deformation at coordinate 1 due to the external load P is d10 while that in coordinate 2 is d20. 

݀ଵ଴ ൌ
ܾܲܽ
ଶܮܫܧ6

ሺܽଶ ൅ 3ܾܽ ൅ 2ܾଶሻ 

X1 
X2

A  B
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݀ଶ଴ ൌ െ
ܾܲܽ
ଶܮܫܧ6

ሺ2ܽଶ ൅ 3ܾܽ ൅ ܾଶሻ 

The compatibility or canonical equations for the structure (considering its two degrees of freedom 1 & 2) are 
given by  

൤
݀ଵଵ ݀ଵଶ
݀ଶଵ ݀ଶଶ

൨ ൤ ଵܺ
ܺଶ
൨ ൌ െ ൤

݀ଵ଴
݀ଶ଴

൨ .      .               .                   .               .         (10) 

X1 and X2 are evaluated from equation (10) to obtain 
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These are substituted into a superposition equation which is the sum of the forces in the basic system plus the 
contribution of the redundant forces. It is written as 
ௗ௘௙ܯ ൌ ௢ܯ ൅ܯഥଵ ଵܺ ൅  ഥଶܺଶ  .      .          .             .               .                    .                   .             (11)ܯ
Where ܯௗ௘௙ is the internal stress in the indeterminate system, ܯഥ௜	is the values of the internal stresses when a 
unit value of the ith redundant acts on the basic system. ܯ௢ is the internal stresses in the basic system due to the 
external loads. The values of X1 and X2 are substituted into equation (11) and solved to obtain 

஺ܯ ൌ െ
ܾܲܽ
ଷܮ

ቈ
ሺܽଶܫܧ6 ൅ 2ܾܽ ൅ ܾଶሻ ൅ ௥ܾܣܩଷܮ

ܫܧ12 ൅ ௥ܣܩଶܮ
቉ 

 

஻ܯ ൌ
ܾܲܽ
ଷܮ

ቈ
ሺܽଶܫܧ6 ൅ 2ܾܽ ൅ ܾଶሻ ൅ ௥ܾܣܩଷܮ

ܫܧ12 ൅ ௥ܣܩଶܮ
቉ 

 

Consider the transversely loaded beam of Figure 3(b). 

This is reduced to a basic system, a system that is statically determinate and geometrically stable (see figure 4). 
X1 and X2 are the redundant forces and their directions of action are coordinates 1 and 2 respectively. The 
flexibility matrix for this structure is the same as that for Figure 3(a). The deformation at coordinate 1 due to the 
external load w is d10 while that in coordinate 2 is d20 and are evaluated by integration or graphically using a 
structural engineering table to obtain 

݀ଵ଴ ൌ
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These are substituted into equation (10) to obtain 
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These are substituted into equation (11) to obtain 
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஻ܯ ൌ െ
ଶܮݓ
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This shows that its end moments are not affected by shear deformation. 
 

Consider the transversely loaded beam of Figure 3(c). 

This is reduced to a basic system, a system that is statically determinate and geometrically stable (see figure 4). 
X1 and X2 are the redundant forces and their directions of action are coordinates 1 and 2 respectively. The 
flexibility matrix for this structure is the same as that for Figure 3(a). The deformation at coordinate 1 due to the 

Onyeyili I. O. et al. / International Journal of Engineering Science and Technology (IJEST)

ISSN : 0975-5462 Vol. 4 No.04 April 2012 1815



external load w is d10 while that in coordinate 2 is d20 and are evaluated by integration or graphically using a 
structural engineering table to obtain 

݀ଵ଴ ൌ
ଷܮݓ7

ܫܧ360
 

݀ଶ଴ ൌ െ
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These are substituted into equation (10) to obtain 
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X1 and X2 are substituted into equation (11) to obtain 
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The same processes were carried out on other transversely loaded beams to obtain their fixed end moments. 

From the equations of statics and by substituting ߙ ൌ
ଵଶாூ

௅మீ஺ೝ
 the table of fixed end forces in beams of constant 

flexural rigidity due to transverse loads was developed and presented below. 
 
Table 1: End forces on transversely loaded prismatic members putting shear deformation into consideration. 

S/No  Beam  Force

1   
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4   
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9   

ଶܯ ൌ
ܯ
ଷܮ
ቈ
2ሺܾଷ ൅ 3ܾܽଶ െ 2ܽଷሻെ∝ ଷܮ
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቉ 

ଵܨ ൌ െܨଶ ൌ െ
ܯ
ܮ
ቈ
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൅
1

∝ ൅4
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10   

ܯ ൌ െ
ଶܮݓ7

30
൬

1
∝ ൅4

൰ 

ଵܨ ൌ
ܮݓ
6
൤
5 ∝ ൅27
5ሺ∝ ൅4ሻ

൨ 

ଶܨ ൌ
ܮݓ
6
൤
10 ∝ ൅33
5ሺ∝ ൅4ሻ

൨ 

 
Note that in the table above clockwise moments were taken as positive while anticlockwise moments were 
negative. In the derivation of the end moments and forces, moments that keep the bottom fibres in tension were 
taken as positive while those that keep the top fibres in tension were negative. Likewise shearing forces that 
cause the system to move upwards were treated as positive in the table. In the derivation, shearing forces that 
cause the system to rotate clockwisely were positive while the opposite were negative. 
 
End Forces due to End Displacements of Elements 

  Consider the loaded cantilever of Figure 5 shown below 

 
Using equation (6), d can be evaluated by integration or graphically using a structural engineering table to 
obtain 

݀ ൌ
ଷܮܨ

ܫܧ3
൅
ܮܨ
௥ܣܩ

 

Since ݀ ൌ 1 

ܨ ൌ
௥ܣܩܫܧ3

ܫܧሺ3ܮ ൅ ଶሻܮ௥ܣܩ
	. . .			.			.			.					.					.																	ሺ12ሻ 

θ can be evaluated by integration or graphically using the structural engineering table to obtain 

ߠ ൌ െ
ଶܮܨ

ܫܧ2
.			.							.						.							.								.							.						.												.						ሺ13ሻ 

By substituting equation (12) into (13) 

ߠ ൌ െ
௥ܣܩܮ3

2ሺ3ܫܧ ൅ ଶሻܮ௥ܣܩ
.			.							.						.							.								.							.						.												ሺ14ሻ 

From fig 5 and equations (12) and (14) Case 1 is developed 
 
 
 

F

d = 1

θ

L 

Figure 5: A cantilever bar displaced by a unit distance at its end due to the 
application of a transverse force F 
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L 
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ܨ ൌ
௥ܣܩܫܧ3

ܫܧሺ3ܮ ൅ ଶሻܮ௥ܣܩ
 

ߠ ൌ െ
௥ܣܩܮ3

2ሺ3ܫܧ ൅ ଶሻܮ௥ܣܩ
 

݀ ൌ 1 

ܯ ൌ ாூ

௅
     ݀ ൌ െ ௅

ଶ
 

ߠ ൌ 1 

 
  CASE I 

 
 
Please note that upward forces and displacement were considered positive and clockwise moment and rotation 
positive. 
 
Consider a cantilever with an applied moment at its end as shown in Figure 6 below 

 
Using equation (6), θ can be evaluated by integration or graphically using a structural engineering table to obtain 

ߠ ൌ
ܮܯ
ܫܧ

 

But since   ߠ ൌ 1 
          ܯ ൌ

ாூ

௅
     .      .        .      ..        .      .   (15) 

Using equation (6), d can be evaluated by integration or graphically using a structural engineering table to 
obtain 

݀ ൌ െ
ଶܮܯ

ܫܧ2
	.			.				.				.					.				.				.		.		ሺ16ሻ 

By substituting the value of M in equation (15) into the equation (16) above 

            ݀ ൌ െ
௅

ଶ
  .  .  .        (17) 

From Figure 6 and equations (15) and (17) Case II is developed. 

 
          CASE II 

 
 

         
Consider a propped cantilever rotated through a unit angle at the fixed end as shown in Fig 7 below 

d

L 

θ = 1
M

d

L 

θ = 1
M

Figure 6: A cantilever bar diplaced by a unit angle at its end due to the application of a 
moment M 

F 

d = 1 

θ

L 
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Using equation (6), θ can be evaluated by integration or graphically using a structural engineering table to obtain 

ߠ ൌ ൬ܯ
ܮ
ܫܧ3

൅
1

௥ܣܩܮ
൰ 

But since ߠ ൌ 1 

          ܯ ൌ ܮܫܧ3 ቀ
ீ஺ೝ

௅మீ஺ೝାଷாூ
ቁ .    .      .              .       (18) 

 
From Figure 7 and equation (18) Case III is developed 
 
          CASE III 

 
 
 
For linear elastic structures, stress is linearly proportional to strain ie stress over strain is a constant provided the 
stress is within the elastic limit of the material. Assuming the deformations are very small, then the law of 
superposition holds. This implies that an addition of two or more cases will provide another valid case. 
 

Let  ܿܽ݁ݏ	ܸܫ ൌ ܫ	݁ݏܽܿ ൅
ଷ௅

ଶ
ቀ

ீ஺ೝ
ଷாூାீ஺ೝ௅మ

ቁ ൈ  ܫܫ	݁ݏܽܥ

                                                                                                                                            
                      CASE IV 

ܨ ൌ
ܫܧ3
ܮ
൬

௥ܣܩ
ܫܧ3 ൅ ଶܮ௥ܣܩ

൰ 

ܯ ൌ
ܫܧ3
2
൬

௥ܣܩ
ܫܧ3 ൅ ଶܮ௥ܣܩ

൰ 

݀ ൌ ൬
௥ܣܩ

ܫܧ3 ൅ ଶܮ௥ܣܩ
൰ ቆ

ܫܧ3
௥ܣܩ

൅
ଶܮ

4
ቇ 

ߠ ൌ 0 
 

Let ܿܽ݁ݏ	ܸ ൌ ܸܫ	݁ݏܽܿ ൊ ቀ
ீ஺ೝ

ଷாூାீ஺ೝ௅మ
ቁ ቀ

ଷாூ

ீ஺ೝ
൅

௅మ

ସ
ቁ 

 
 
 
 
 
 
 

M 

F 

θ = 1

L

d = 0

M

F

θ = 1

L

d = 0

Figure 7: A propped cantilever rotated through a unit angle at the fixed end 

ܯ ൌ ܮܫܧ3 ൬
௥ܣܩ

௥ܣܩଶܮ ൅ ܫܧ3
൰ 

ߠ ൌ 1 
݀ ൌ 1 
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                        CASE V   

ܨ ൌ
ܫܧ3
ܮ
൬

௥ܣܩ4
ܫܧ12 ൅ ଶܮ௥ܣܩ

൰ 

ܯ ൌ ܮܫܧ6 ൬
௥ܣܩ

ܫܧ3 ൅ ଶܮ௥ܣܩ
൰ 

݀ ൌ 1 
ߠ ൌ 0 

 

Let ܿܽ݁ݏ	ܫܸ ൌ
௅

ଶ
ൈ ܫ	݁ݏܽܿ ൅  ܫܫ	݁ݏܽܿ

 
                         CASE VI 

ܨ ൌ
ܫܧ3
ܮ
൬

௥ܣܩ4
ܫܧ12 ൅ ଶܮ௥ܣܩ

൰ 

ܯ ൌ ൬
ܫܧ
ܮ
൰ 

݀ ൌ 0 

ߠ ൌ ൬
௥ܣܩ

ܫܧ3 ൅ ଶܮ௥ܣܩ
൰ ቆ
ܫܧ12 ൅ ଶܮ௥ܣܩ

௥ܣܩ4
ቇ 

 

Let ܿܽ݁ݏ	ܫܫܸ ൌ ܫܸ	݁ݏܽܿ ൊ ቀ
ଵଶாூାீ஺ೝ௅మ

ସሺଷாூାீ஺ೝ௅మሻ
ቁ 

 
                         CASE VII 

ܨ ൌ ܫܧ6 ൬
௥ܣܩ

ܫܧ12 ൅ ଶܮ௥ܣܩ
൰ 

ܯ ൌ
ܫܧ4
ܮ
ቆ
ܫܧ3 ൅ ଶܮ௥ܣܩ

ܫܧ12 ൅ ଶܮ௥ܣܩ
ቇ 

݀ ൌ 0 
ߠ ൌ 1 

 
From Cases I, V, VII, III and the equations of statics the table of end forces caused by end displacement of 
prismatic members is produced. This time shear deformation was put into consideration. The table is presented 
as table 2 below.  
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Table 2: End forces caused by end displacement of prismatic members putting shear deformation into 
consideration. 

S/No  Beam  Force Remark

1   
ଵܨ ൌ െܨଶ ൌ െ

ܫܧ12
ܮ

൬
௥ܣܩ

ܫܧ12 ൅ ଶܮ௥ܣܩ
൰ 

ൌ െ
ܫܧ12
ଷܮ

൬
1

ߙ ൅ 1
൰ 

ଵܯ ൌ ଶܯ ൌ ܫܧ6 ൬
௥ܣܩ

ܫܧ12 ൅ ଶܮ௥ܣܩ
൰ 

ൌ െ
ܫܧ6
ଶܮ

൬
1

ߙ ൅ 1
൰ 

 
See  
Case V 

2   
ଵܨ ൌ െܨଶ ൌ െ6ܫܧ ൬

௥ܣܩ
ܫܧ12 ൅ ଶܮ௥ܣܩ

൰ 

ൌ െ
ܫܧ6
ଶܮ

൬
1

ߙ ൅ 1
൰ 

ଵܯ ൌ
ܫܧ2
ܮ
ቆ
െ6ܫܧ ൅ ଶܮ௥ܣܩ

ܫܧ12 ൅ ଶܮ௥ܣܩ
ቇ 

ൌ
ܫܧ
ܮ
൬
2 െ ߙ
ߙ ൅ 1

൰ 

ଶܯ ൌ
ܫܧ4
ܮ
ቆ
ܫܧ3 ൅ ଶܮ௥ܣܩ

ܫܧ12 ൅ ଶܮ௥ܣܩ
ቇ 

ൌ
ܫܧ
ܮ
൬
ߙ ൅ 4
ߙ ൅ 1

൰ 

 
See  
Case VII 

3   
ଵܨ ൌ െܨଶ ൌ െ

ܫܧ3
ܮ
൬

௥ܣܩ
ܫܧ3 ൅ ଶܮ௥ܣܩ

൰ 

ൌ െ
ܫܧ12
ଷܮ

൬
1

ߙ ൅ 4
൰ 

ܯ ൌ െ3ܫܧ ൬
௥ܣܩ

ܫܧ3 ൅ ଶܮ௥ܣܩ
൰ 

ൌ െ
ܫܧ12
ଶܮ

൬
1

ߙ ൅ 4
൰ 

 

 
See  
Case I 

4   
ଵܨ ൌ െܨଶ ൌ െ3ܫܧ ൬

௥ܣܩ
ܫܧ3 ൅ ଶܮ௥ܣܩ

൰ 

ൌ െ
ܫܧ12
ଶܮ

൬
1

ߙ ൅ 4
൰ 

ܯ ൌ ܮܫܧ3 ൬
௥ܣܩ

ܫܧ3 ൅ ଶܮ௥ܣܩ
൰ 

ൌ
ܫܧ12
ܮ

൬
1

ߙ ൅ 4
൰ 

 

 
See  
Case III 

 Where EI is the flexural rigidity, G is the modulus of elasticity in shear 
 	
∝ൌ

ଵଶாூ

ீ஺ೝ௅మ
  .  .                .            .                 .                .       (19) 

 
When dealing in three dimensions 

∝௬ൌ
ଵଶாூ೤
ீ஺ೝ௅మ

 .           .          .              .                .                  (20) 

 

∝௭ൌ
ଵଶாூ೥
ீ஺ೝ௅మ

             .            .                  .          .          .        (21) 

Stiffness Matrix of a Space Element 
 
Having obtained the table of the end forces caused by end displacement of prismatic members considering shear 
deformation the stiffness matrix of equation (6) is evaluated using table 2. The non-zero stiffness coefficients 
are  

݇ଵଵ ൌ
ܣܧ
ܮ
, ݇ଵ଻ ൌ െ

ܣܧ
ܮ
, ݇ଶଶ ൌ

௭ܫܧ12
ଷܮ

൬
1

∝௭൅ 1
൰ 

d = 1

M2 

M1

F2F1 

L 

M2 
M1 

F1  F2

θ = 1

L 

M 

F1  F2 

d = 1

L 

F1 

M

F2

θ = 1

L 
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݇ଶ଺ ൌ
௭ܫܧ3
ଶܮ

ቆ
1

∝௬൅ 1
ቇ , ݇ଶ଼ ൌ െ

௭ܫܧ12
ଷܮ

൬
1

∝௭൅ 1
൰ , ݇ଶ	ଵଶ ൌ

௭ܫܧ6
ଶܮ

൬
1

∝௭൅ 1
൰ 

݇ଷଷ ൌ
௬ܫܧ12
ଶܮ

ቆ
1

∝௬൅ 1
ቇ , ݇ଷହ ൌ െ

௬ܫܧ3
ଶܮ

ቆ
1

∝௬൅ 1
ቇ , ݇ଷଽ ൌ െ

௬ܫܧ12
ଶܮ

ቆ
1

∝௬൅ 1
ቇ 

݇ଷ	ଵଵ ൌ െ
௬ܫܧ6
ଶܮ

ቆ
1

∝௬൅ 1
ቇ , ݇ସସ ൌ

ܬܩ
ܮ
, ݇ସ	ଵ଴ ൌ െ

ܬܩ
ܮ
, ݇ହହ ൌ

௬ܫܧ
ܮ
ቆ
∝௬൅ 4
∝௬൅ 1

ቇ 

݇ହଽ ൌ
௬ܫܧ6
ଶܮ

ቆ
1

∝௬൅ 1
ቇ , ݇ହ	ଵଵ ൌ

௬ܫܧ
ܮ
ቆ
2 െ∝௬
∝௬൅ 1

ቇ , ݇଺଺ ൌ
௭ܫܧ
ܮ
൬
∝௭൅ 4
∝௭൅ 1

൰ 

݇଺଼ ൌ െ
௭ܫܧ6
ଶܮ

൬
1

∝௭൅ 1
൰ , ݇଺	ଵଶ ൌ

௭ܫܧ
ܮ
൬
2 െ∝௭
∝௭൅ 1

൰ , ݇଻଻ ൌ
ܣܧ
ܮ
 

଼଼݇ ൌ
௭ܫܧ12
ଷܮ

൬
1

∝௭൅ 1
൰ , ଼݇	ଵଶ ൌ െ

௭ܫܧ6
ଶܮ

൬
1

∝௭൅ 1
൰ , ݇ଽଽ ൌ

௬ܫܧ12
ଷܮ

ቆ
1

∝௬൅ 1
ቇ 

݇ଽ	ଵଵ ൌ
௬ܫܧ6
ଶܮ

ቆ
1

∝௬൅ 1
ቇ , ݇ଵ଴	ଵ଴ ൌ

ܬܩ
ܮ
, ݇ଵଵ	ଵଵ ൌ

௬ܫܧ
ܮ
ቆ
∝௬൅ 4
∝௬൅ 1

ቇ 

݇ଵଶ	ଵଶ ൌ
௭ܫܧ
ܮ
൬
∝௭൅ 4
∝௭൅ 1

൰ 

(a) When the Near End is hinged 

When the near end is hinged; ܨସ ൌ ହܨ ൌ ଺ܨ ൌ 0  ,  because the moments at near end is zero. 
Consequently 

݇ସଵ ൌ ݇ସଶ ൌ ݇ସଷ ൌ ⋯ ൌ ݇ସ	ଵଶ ൌ 0 
݇ହଵ ൌ ݇ହଶ ൌ ݇ହଷ ൌ ⋯ ൌ ݇ହ	ଵଶ ൌ 0 
݇଺ଵ ൌ ݇଺ଶ ൌ ݇଺ଷ ൌ ⋯ ൌ ݇଺	ଵଶ ൌ 0 

 
From Table 2 each stiffness coefficent can be deduced.  The non-zero ones are 

݇ଵଵ ൌ
ܣܧ
ܮ
, ݇ଵ଻ ൌ െ

ܣܧ
ܮ
, ݇ଶଶ ൌ

௭ܫܧ12
ଷܮ

൬
1

∝௭൅ 4
൰ , ݇ଶ଼ ൌ െ

௭ܫܧ12
ଷܮ

൬
1

∝௭൅ 4
൰ 

 

݇ଶ	ଵଶ ൌ
௭ܫܧ12
ଶܮ

൬
1

∝௭൅ 4
൰ , ݇ଷଷ ൌ

௬ܫܧ12
ଷܮ

൬
1

∝௭൅ 4
൰,	 

݇ଷଽ ൌ െ
௬ܫܧ12
ଷܮ

ቆ
1

∝௬൅ 4
ቇ , ݇ଷ	ଵଵ ൌ െ

௬ܫܧ12
ଶܮ

ቆ
1

∝௬൅ 4
ቇ 

݇଻଻ ൌ
ܣܧ
ܮ
, ଼଼݇ ൌ

௭ܫܧ12
ଷܮ

൬
1

∝௭൅ 4
൰ , ଼݇	ଵଶ ൌ െ

௭ܫܧ12
ଶܮ

൬
1

∝௭൅ 4
൰	 

݇ଽଽ ൌ
௬ܫܧ12
ଷܮ

ቆ
1

∝௬൅ 4
ቇ , ݇ଽ	ଵଵ ൌ

௬ܫܧ12
ଶܮ

ቆ
1

∝௬൅ 4
ቇ 

		݇ଵଵ	ଵଵ ൌ
௬ܫܧ12
ܮ

ቆ
1

∝௬൅ 4
ቇ , ݇ଵଶ	ଵଶ ൌ

௭ܫܧ12
ܮ

൬
1

∝௭൅ 4
൰ 

 
By substituting these stiffness coefficents into equation (6) the stiffness matrix (taking shear 
deformation into account) of a space element hinged at the near end is obtained. 
 

(b) When the Far End is hinged 

When the far end is hinged; ܨଽ ൌ ଵ଴ܨ ൌ ଵଵܨ ൌ 0  ,  because the moments at far end is zero. 
Consequently 

݇ଽଵ ൌ ݇ଽଶ ൌ ݇ଽଷ ൌ ⋯ ൌ ݇ଽ	ଵଶ ൌ 0 
݇ଵ଴	ଵ ൌ ݇ଵ଴	ଶ ൌ ݇ଵ଴	ଷ ൌ ⋯ ൌ ݇ଵ଴	ଵଶ ൌ 0 
݇ଵଵ	ଵ ൌ ݇ଵଵ	ଶ ൌ ݇ଵଵ	ଷ ൌ ⋯ ൌ ݇ଵଵ	ଵଶ ൌ 0 

 
From Table 2 each stiffness coefficent can be deduced.  The non-zero ones are 

݇ଵଵ ൌ
ܣܧ
ܮ
, ݇ଵ଻ ൌ െ

ܣܧ
ܮ
, ݇ଶଶ ൌ

௭ܫܧ12
ଷܮ

൬
1

∝௭൅ 4
൰ , ݇ଶ଼ ൌ െ

௭ܫܧ12
ଷܮ

൬
1

∝௭൅ 4
൰ 

 

݇ଶ଺ ൌ
௭ܫܧ12
ଶܮ

൬
1

∝௭൅ 4
൰ , ݇ଷଷ ൌ

௬ܫܧ12
ଷܮ

൬
1

∝௭൅ 4
൰ , ݇ଷଽ ൌ െ

௬ܫܧ12
ଷܮ

ቆ
1

∝௬൅ 4
ቇ,	 
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݇ଷହ ൌ െ
௬ܫܧ12
ଶܮ

ቆ
1

∝௬൅ 4
ቇ , ݇଻଻ ൌ

ܣܧ
ܮ
 

, ଼଼݇ ൌ
௭ܫܧ12
ଷܮ

൬
1

∝௭൅ 4
൰ , ݇଺଼ ൌ െ

௭ܫܧ12
ଶܮ

൬
1

∝௭൅ 4
൰ , ݇ଽଽ ൌ

௬ܫܧ12
ଷܮ

ቆ
1

∝௬൅ 4
ቇ 

݇ହଽ ൌ
௬ܫܧ12
ଶܮ

ቆ
1

∝௬൅ 4
ቇ , ݇ହହ ൌ

௬ܫܧ12
ܮ

ቆ
1

∝௬൅ 4
ቇ , 	݇଺଺ ൌ

௭ܫܧ12
ܮ

൬
1

∝௭൅ 4
൰ 

 
By substituting these stiffness coefficents into equation (6) the stiffness matrix (taking shear 
deformation into account) of a space element hinged at the far end is obtained. 
 

Stiffness Matrix of a Plane Element 
 
For prismatic elements that lie and deform only in one plane, only six degrees of freedom exist (see figure 3.5). 
If the plane element is lying in the xy plane (see figure 3.5) and all the external loads on it act in the same plane 
then 

݀ଷ ൌ ݀ସ ൌ ݀ହ ൌ ݀ଽ ൌ ݀ଵ଴ ൌ ݀ଵଵ ൌ 0 
If the deformation in these coordinates is zero then the forces (or moments for rotations) in these coordinates 
will also be zero. 

ଷܨ ൌ ସܨ ൌ ହܨ ൌ ଽܨ ൌ ଵ଴ܨ ൌ ଵଵܨ ൌ 0 
If these are substituted into equation (1) it will lead to automatic deletion of rows and columns 3, 4, 5, 9, 10 and 
11. Equation (8) reduces to 
              

ሾ݇ሿ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

ܣܧ
ܮ

0 0

0
ܫܧ12
ଷܮ

൬
1

∝ ൅1
൰

ܫܧ6
ଶܮ

൬
1

∝ ൅1
൰

0
ܫܧ6
ଶܮ

൬
1

∝ ൅1
൰

ܫܧ
ܮ
൬
∝ ൅4
∝ ൅1

൰

െ
ܣܧ
ܮ

0 0

0 െ
ܫܧ12
ଷܮ

൬
1

∝ ൅1
൰

ܫܧ6
ଶܮ

൬
1

∝ ൅1
൰

0 െ
ܫܧ6
ଶܮ

൬
1

∝ ൅1
൰

ܫܧ
ܮ
൬
2െ∝
∝ ൅1

൰

െ
ܣܧ
ܮ

0 0

0 െ
ܫܧ12
ଷܮ

൬
1

∝ ൅1
൰ െ

ܫܧ6
ଶܮ

൬
1

∝ ൅1
൰

0
ܫܧ6
ଶܮ

൬
1

∝ ൅1
൰

ܫܧ
ܮ
൬
2െ∝
∝ ൅1

൰

ܣܧ
ܮ

0 0

0
ܫܧ12
ଷܮ

൬
1

∝ ൅1
൰ െ

ܫܧ6
ଶܮ

൬
1

∝ ൅1
൰

0 െ
ܫܧ6
ଶܮ

൬
1

∝ ൅1
൰

ܫܧ
ܮ
൬
∝ ൅4
∝ ൅1

൰ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

  . .  .  .  .  .  (22) 
ܫ ൌ   ∝௭	ൌ	௭, ∝ܫ

Equation (22) is the stiffness matrix of a plane element taking into account deformation due to 
shear. 
 

a) When the Near End is hinged  

ଷܨ ൌ ସܨ ൌ ହܨ ൌ ଺ܨ ൌ ଽܨ ൌ ଵ଴ܨ ൌ ଵଵܨ ൌ 0 
       By substituting these into equaation (1) the stiffness matrix of equation (8) reduces to 
 

ሾ݇ሿ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
࡭ࡱ

ࡸ
						૙ ૙

૙ 							
૚૛ࡵࡱ

૜ࡸ
ቀ

૚

∝ା૝
ቁ ૙

૙ 						૙ ૙

െ
࡭ࡱ

ࡸ
૙ ૙

૙ െ
૚૛ࡵࡱ

૜ࡸ
ቀ

૚

∝ା૝
ቁ 		

૚૛ࡵࡱ

૛ࡸ
ቀ

૚

∝ା૝
ቁ

૙ ૙ ૙
െ

࡭ࡱ

ࡸ
૙ ૙

૙ െ
૚૛ࡵࡱ

૜ࡸ
ቀ

૚

∝ା૝
ቁ ૙

૙
૚૛ࡵࡱ

૛ࡸ
ቀ

૚

∝ା૝
ቁ ૙

࡭ࡱ

ࡸ
		૙ ૙

૙ 		
૚૛ࡵࡱ

૜ࡸ
ቀ

૚

∝ା૝
ቁ െ

૜ࡵࡱ

૛ࡸ

૙ 		െ
૚૛ࡵࡱ

૛ࡸ
ቀ

૚

∝ା૝
ቁ 	

૚૛ࡵࡱ

ࡸ
ቀ

૚

∝ା૝
ቁ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

   

             .    .        .       (23) 
Equation (23) is the stiffness matrix (taking shear deformation into consideration) of a plane 
element hinged at the near end. 
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b) When the Far End is hinged  

ଷܨ ൌ ସܨ ൌ ହܨ ൌ ଽܨ ൌ ଵ଴ܨ ൌ ଵଵܨ ൌ ଵଶܨ ൌ 0 
       By substituting these into equaation (1) the stiffness matrix of equation (8) reduces to 
 

ሾ݇ሿ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

࡭ࡱ

ࡸ
૙					 ૙

૙
૚૛ࡵࡱ

૜ࡸ
ቀ

૚

∝ା૝
ቁ					

૚૛ࡵࡱ

૛ࡸ
ቀ

૚

∝ା૝
ቁ

૙
૚૛ࡵࡱ

૛ࡸ
ቀ

૚

∝ା૝
ቁ					

૚૛ࡵࡱ

ࡸ
ቀ

૚

∝ା૝
ቁ

െ
࡭ࡱ

ࡸ
૙					 ૙

૙ െ
૚૛ࡵࡱ

૜ࡸ
ቀ

૚

∝ା૝
ቁ	 ૙

૙ െ
૚૛ࡵࡱ

૛ࡸ
ቀ

૚

∝ା૝
ቁ	 ૙

െ
࡭ࡱ

ࡸ
૙ ૙

૙ െ
૚૛ࡵࡱ

૜ࡸ
ቀ

૚

∝ା૝
ቁ െ

૚૛ࡵࡱ

૛ࡸ
ቀ

૚

∝ା૝
ቁ

૙ ૙ ૙

࡭ࡱ

ࡸ
૙	 						૙

૙ 	
૚૛ࡵࡱ

૜ࡸ
ቀ

૚

∝ା૝
ቁ	 						૙

૙ ૙	 						૙ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

  .     (24) 

 
Equation (24) is the stiffness matrix of a plane element hinged at the far end (taking into 
consideration deformation due to shear). 

 
Summary and Conclusion 

Shear deformation is often ignored in structural analysis. The development of the ‘fixed end moments on 
transversely loaded prismatic elements’ and ‘The end forces due to unit end displacements of prismatic 
elements’ and which are presented in tables 1 and 2 would facilitate an easy implementation of the deformation 
due to shear in structural analysis of frames. The component in these tables that captures the effect or 
contribution deformation due to shear is α. 

∝ൌ
ܫܧ12
ଶܮ௥ܣܩ

			.						.					.						.								ሺ19ሻ 

Recall that modulus of elasticity in shear is the ratio of shear stress to shear strain 

ܩ ൌ
߬
ߛ
								.											.								.			ሺ23ሻ 

Where t is the shear stress and γ is the shear strain.   
It then follows that when shear deformation is ignored γ is taken as zero (γ = 0) and the modulus of elasticity in 
shear G from equation (23) tends to infinity (ܩ ൌ ∞	).  If this value of G is substituted into equation (22), ∝ൌ
0	and the forces in table 1 and 2 become the same as that which can be found in many structural engineering 
textbooks e.g. Davison and Owens (2007) and Reynolds and Steedman (2001). 
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Figure 2: A 2D representation of the six degrees of freedom 
(coordinates) of a plane element in the xy plane 
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(b)   A  space element  showing  the  twelve 
coordinates  or  degrees  of  freedom 
represented with numbers 
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(a)    A  space  element  showing  the  twelve 
coordinates  or  degrees  of  freedom  all 
labelled appropriately.  ‘d’  is  for  translation 
and θ is for rotation 
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Figure 3: Some tranversely loaded beams 
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