Forces Due To Pipe Bends

The momentum change and the unbalanced internal pressure of the water leads to forces on the pipes

The force diagram in figure is a convenient method for finding the resultant force on a bend. The forces can be resolved into X and Y components to find the magnitude and direction of the resultant force on the pipe.

V₁= velocity before change in size of pipe, ft /s (m/s)

V₂= velocity after change in size of pipe, ft /s (m/s)

p1= pressure before bend or size change in pipe, lb/ft2

(kPa)

p₂= pressure after bend or size change in pipe, lb/ft²

(kPa)

A₁= area before size change in pipe, ft² (m²)

 A_2 = area after size change in pipe, ft² (m²)

 F_{2m} = force due to momentum of water in section 2 V₂Qw/g

 $F_{1m}\text{=}$ force due to momentum of water in section 1 $V_1\text{Qw/g}$

 P_2 = pressure of water in section 2 times area of section 2 $p_1 A_1$

 P_1 = pressure of water in section 1 times area of section 1 $p_1 A_1$

w= unit weight of liquid, lb/ft³ (kg/m³)

Q= discharge, ft³/s (m³/s)

If the pressure loss in the bend is neglected and there is no change in magnitude of velocity around the bend,then

 $R=2A[(wV^{2}/g)+p]cosine of angle between pipes where R resultant force on bend, lb (N)$

p= pressure, lb/ft² (kPa) w= unit weight of water, 62.4 lb/ft³ (998.4 kg/m³) V= velocity of flow, ft/s (m/s)

g= acceleration due to gravity, 32.2 ft/s² (9.81 m/s²) A= area of pipe, ft² (m²)

Source: http://www.engineeringcivil.com/forces-due-to-pipe-bends.html