The introduction of continuous welded rail has vastly improved the geometric stability of the track structure. Nevertheless, the localised change in the metallurgical character of the rail in the vicinity of welds can ultimately initiate damage to fastenings and sleepers. This has, however, improved quite dramatically with the development of the flash butt welding process.

FISH BOLTED RAIL JOINTS have been one of the major locations and causes of maintenance on rail track since the first railway line was built. Discontinuity of the track running surface produces dynamic impact loads battering the rail joint ends and bending the rail. This causes greater stress on the ballast and subgrade, which in turn increases ballast settlement and produces uneven track. The pumping action at the joints also accelerates rail failure, sleeper wear, and fouling of the ballast at the joint.

The introduction of continuous welded rail has vastly improved the geometric stability of the track structure. Nevertheless, the localised change in the metallurgical character of the rail in the vicinity of welds can ultimately initiate damage to fastenings and sleepers. This has, however, improved quite dramatically with the development of the flash butt welding process.

Flash butt welding does not require any additional welding material, as the rail itself is used as a welding compound. The result is a near-flawless weld of which the strength exceeds that of the rail material.

Flash butt welding has been used by railways since around 1930. Initially, a drawback was that flash butt welding was only used in stationary depots, which then required the arduous transport of the long welded rail, thus setting constructional limits for the production lengths.

If it was possible to perform butt welding on rails in situ, near perfect continuous welded rails could be possible. Plasser & Theurer, as the world leader in track maintenance and construction machinery, therefore developed the first mobile flash butt welding machine in 1973 using a welding head, the K355, developed at the J O Paton Institute in Kiev, Russia.

Today mobile flash butt welding is used in all modern railways for construction, removing old joints or fatigued welds, rail replacement programmes, etc.

K 355 APT FLASH BUTT WELDING MACHINE

A three-phase 50 Hz alternator with a rated output of 150 kVA is designed as a revolving field generator, that is with a fixed anchor and a revolving magnet wheel. The primary voltage is set between 340 V and 380 V depending upon the cross-section of the rail being welded.

The secondary circuit of the power plant is integrated in the welding head in order to transform the welding current from 380 V to approximately 6 V and the welding amperage from 395 A to more than 20 000 A.

In contrast to other welding methods, the electric flash butt welding machine can produce a graph report of each welding sequence. This produces a document for every weld which enables an immediate assess-
ment of the welding quality.

The welding machine is equipped with a three channel recorder which records the parameters:
- Welding current intensity
- Compression force
- Displacement (feed travel). This recording shows the movement of the two halves of the welding unit relative to one another. This indicates the burn-off, the compression displacement, the total material consumption and the shearing process.

THE FLASH BUTT WELDING PROCESS

During welding there is a consumption of material as a result of the burn-off and compression of the rails. The consumption of material amounts to approximately 35 mm. To allow the welding head to move the rails without hindrance, rail fastenings of the entire section have to be removed and the rail laid on rollers so that the frictional resistance between the rail base and the sleeper can be reduced to a minimum. These rollers are inserted at approximately every 20 sleepers.

The machine’s rail-pulling device will be used to pull the rail with the least resistance towards the other. A gap of 3–5 mm must be left between the rails. They should not make contact. Good alignment is crucial for a quality weld because if the rails are aligned at an angle, uneven preheating will result.

The machine’s rail-pulling device will be used to pull the rail with the least resistance towards the other. Good alignment is crucial for a quality weld because if the rails are aligned at an angle, uneven preheating will result.
According to Joule’s law, the maximum upsetting distance is not set in terms of distance but rather in terms of pressure. Upsetting will continue until the pressure reaches its maximum when all the pasty metal consisting of slag and impurities has been squeezed out. The upsetting distance can be as much as 15 mm.

Immediately after the weld has been completed, a hydraulic shearing device integrated in the welding head removes the welding upset. The shearing device perfectly follows the contours of the rail. This ends the welding procedure; the clamping jaws are released and the welding head lifted. The loosened upset is removed from the rail using a steel bar.

Phase 1: Warming Up
The warming-up phase starts with the warming-up phase. At the start of this phase the welding head will bring the rail together to close the gap during alignment. This can be seen on the distance line. Once arcing starts the programme unit will start the timer sequence.

The warming-up phase is composed of repeated pulses of high amperage of more than 20,000 A at approximately 6 V. According to Joule’s law, the maximum heat is produced on the points of maximal resistance. Maximum heat is therefore produced where the high current flows through a small area of contact when the rails are brought together.

Phase 2: Flash burning
During this phase the rails are pulled together at a constant rate of 0.22 mm/sec. The speed of approach rises in five steps to a final value of 1 mm/sec approximately 10 seconds before upset. The pulses of high amperage continue. Material consumption during this phase is in the order of 20 mm.

Phase 3: Upset
The third phase is the upset phase. Once the required upset temperature of approx. 100 °C has been reached, the rail ends are pulled and compressed together with a force that can reach up to 45 t. The temperature is not the trigger for the upset phase to start, however. It starts as the last phase of the fully automatic timed sequence.

The upsetting distance should be sufficiently high to prevent micro-porosity and non-metallic inclusions in the welding seam. The upsetting distance is not set in terms of distance but rather in terms of pressure. Upsetting will continue until the pressure reaches its maximum when all the pasty metal consisting of slag and impurities has been squeezed out. The upsetting distance can be as much as 15 mm.

Immediately after the weld has been completed, a hydraulic shearing device integrated in the welding head removes the welding upset. The shearing device perfectly follows the contours of the rail. This ends the welding procedure; the clamping jaws are released and the welding head lifted. The loosened upset is removed from the rail using a steel bar.

POST WELDING TREATMENT

Chromium manganese rails
Standard rail types do not require any heat treatment after welding as their cooling rate between 800 °C and 300 °C is sufficiently slow to allow complete formation of a pearlitic microstructure.

Alloy rails retard the rate at which pearlitic will form. To avoid the formation of martensite a controlled cooling cycle must be initiated.

Controlled cooling is achieved by post-heating the rail within 30 seconds after the weld. Exothermic heating powder is poured into a steel clinker former and ignited using ignition blocs. The powder burns at a temperature of between 370 °C and 430 °C. The clinker former must stay on for approximately 30 minutes. This will retard the cooling sufficiently for complete pearlitic formation.

Head hardened rails
Because of temperatures in the austenite range during welding, head hardened rails are softened in the heat-affected zone and the effect of heat treatment is lost. This softening can be reduced by rapidly cooling the rail head just after welding.

This rapid cooling is achieved by blowing dried and compressed air over the weld within 30 seconds after the upset. Forced cooling takes approximately 60–90 seconds. This ensures that a fine pearlitic microstructure is achieved, re-imposing the superior hardness of the crown to be similar to the rest of the rail.

FINALISING
Behind the welding machine the rail joints have to be ground according to the rail profile, true to shape and line.

When the sides of the rails are welded out of alignment up to a maximum of 0.8 mm, the joint is ground back at a slant not steeper than 1:500 on the running edge of the rail and to 1:50 on the field side. Welded joints which are out of alignment in excess of 0.8 mm in the crown are rejected, cut out and re-welded.

To allow for temperature expansion and contraction of the rail, the rail must be de-stressed after welding. De-stressing is accomplished simply by replacing all sleeper fastenings whilst the rail temperature is within the de-stressing range as specified for that specific track section.

THE CHARACTERISTICS OF FLASH BUTT WELDING

Static bending (deflection)
Every 500 welds two 600 mm lengths of rail are welded together for a static bending test performed by the Spoornet metallurgical laboratory.

The rails usually fail clear of both the heat affected zone and the weld seam in the parent material confirming the higher strength of the weld. Fatigue tests done by Plasser & Theurer and the former British Rail showed similar failure results. Under cyclic load, the fatigue life of flash butt welds is generally greater than those of the parent material.

Metallurgical examinations
Plasser& Theurer requests metallurgical examinations of a weld at the start of a new welding site to ensure correct machine set-up and weld quality.

Spheroidised zone
The spheroidised zones are the two light gray areas which are visible on the extremities of the heat-affected zone. Spheroidisation develops when the steel remains at a temperature of around 700 °C for a long time. The lamelae of cementite in the pearlite become round. This area will therefore also be softer.

On the outskirts of the spheroidised zone the temperature was below 723 °C and austenisation did not take place. The parent material was therefore not altered.

The spheroidised zones of flash butt welds are normally between 4 mm and 8 mm.

The welding seam
In the middle of the heat-affected zone the welding seam is visible as a thin line. The high temperature on the welding seam has burned away the carbon in the steel so that it returns to a ferritic state. The welding seam is therefore softer than the rest of the heat-affected zone.

Conclusion
Each weld failure requires the broken weld to be cut out and the insertion of a closure rail, thus needing two more welds. However, failure of in-situ K355 APT welds as a percentage of the total number of welds are negligible. Therefore the high quality of these welds provides greater savings in the long term. With flash butt welding the narrow heat affected zone shows metallurgical characteristics greater in strength than the parent material. The quality of flash butt welding is therefore superior to any other
Source: