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Abstract—Unlike general-purpose processors, digital signal 
processors (DSP processors) are strongly application-dependent. To 
meet the needs for diverse applications, a wide variety of DSP 
processors based on different architectures ranging from the 
traditional to VLIW have been introduced to the market over the 
years.  The functionality, performance, and cost of these processors 
vary over a wide range. In order to select a processor that meets the 
design criteria for an application, processor performance is usually 
the major concern for digital signal processing (DSP) application 
developers. Performance data are also essential for the designers of 
DSP processors to improve their design. Consequently, several DSP 
performance benchmarks have been proposed over the past decade or 
so. However, none of these benchmarks seem to have included recent 
new DSP applications. 

In this paper, we use a new benchmark that we recently developed 
to compare the performance of popular DSP processors from Texas 
Instruments and StarCore. The new benchmark is based on the 
Selectable Mode Vocoder (SMV), a speech-coding program from the 
recent third generation (3G) wireless voice applications. All 
benchmark kernels are compiled by the compilers of the respective 
DSP processors and run on their simulators. Weighted arithmetic 
mean of clock cycles and arithmetic mean of code size are used to 
compare the performance of five DSP processors. 

In addition, we studied how the performance of a processor is 
affected by code structure, features of processor architecture and 
optimization of compiler. The extensive experimental data gathered, 
analyzed, and presented in this paper should be helpful for DSP 
processor and compiler designers to meet their specific design goals. 
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I. INTRODUCTION 

HE rapid growth enjoyed by the DSP processor industry 
over the past few years is expected to continue at a 

double-digit annual rate [1]. To address the need for a wide 
variety of applications, various types of DSP processors based 
on different architectures have been introduced to the market 
[2]-[5]. As a result, performance measurement of DSP 
processors has become an important issue for both processor 
manufacturers and application developers. Manufacturers rely 
on performance data to improve processor design, and 
application developers use them to select a processor that best 
meets their design criteria.  

Over the past decade, several performance benchmarks such 
as BDTI [6], EEMBC [7], MediaBench [8] and MiBench [9] 
have been proposed for DSP processors. However, none of 
these benchmarks seems to have included most recent 
applications. Moreover, none seems to have investigated how 
the performance of a processor can be affected by code 
structure, features of processor architecture and optimization 
of compiler. Such information can be important in gaining 
insight into how a DSP processor and its compiler handle 
various applications and thus helpful in improving processor 
design. 

To address the aforementioned concerns we have recently 
developed and proposed a new benchmark [10] based on the 
Selectable Mode Vocoder (SMV), a speech-coding program 
from the third generation (3G) wireless applications [11]. 
SMV is known as the 3GPP2 standard speech codec for the 
CDMA2000 wireless network. Although it has been replaced 
by the fourth generation vocoder (4GV) recently, SMV 
remains to be one of the most efficient and sophisticated 
speech codecs capable of operating in modes at different bit 
rates. Also, the SMV fixed point C code consists of most of 
the common speech coding functions which exist in other 
CDMA wireless speech vocoders. 

The new benchmark, referred to as the SMV benchmark in 
this paper, consists of eight kernels written in C language. Our 
goal in this paper is to use the new benchmark to measure the 
performance of popular DSP platforms. Since it is difficult to 
isolate the effect of the compiler, performance of a DSP 
platform is defined as the combined performance of both the 
DSP processor and its compiler [12]. In order to gain insight 
into how DSP compilers and DSP processors might be 
improved, we also studied how the performance of a processor 
is affected by the code structure of the benchmark programs; 
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certain architectural features of the processors including issue 
width, number of the available registers and functional units, 
support for hardware loop controls, branch delays, and load 
latency; and the characteristics of DSP compilers such as their 
ability to exploit instruction level parallelism (ILP). 

We conducted extensive series of experiments on five 
popular DSP processors including Texas Instruments’ TIC64, 
TIC62 [13] and TIC55, and StarCore’s SC 110 and SC140 
DSP processors. All kernels of the new benchmark are 
compiled by the compilers of the respective DSP processors 
and then executed on their simulators.  

This paper is organized into five sections. In section II, we 
briefly review the rationale for our choosing the SMV as the 
new benchmark. In the same section, we also define the 
selection criteria for the benchmark and our methodology in 
building it (in section II). In section III, we discuss our 
experimental procedure and present the experimental results. 
In section IV, we discuss our experimental results and relate 
them to practical design considerations for both the DSP 
processors and their compilers. In section V, we provide our 
concluding remarks.  

II. THE SMV BENCHMARK PROGRAM 

As mentioned in the previous section, the new SMV 
benchmark consists of eight kernels chosen from the SMV 
program [14] for 3G voice wireless cell phone application. 
Provided below are brief summaries of A) the rationale based 
on which the SMV is selected as our new DSP benchmark, B) 
the criteria used in identifying and building our benchmark 
programs, and C) the methodologies adopted in conducting 
our experiment and analyzing the experimental results. 

A. Rationale for selecting the SMV as the new DSP benchmark

1.Wireless communication is a major DSP application. In 
dollar amount, it accounts for almost three quarters of the 
entire digital signal processor market [15]. To measure the 
performance of DSP processors, some manufacturers still use 
the 2G wireless applications as their benchmarks. To the best 
of our knowledge, there has been no report on using the newer 
3G wireless application to measure the performance of DSP 
processors. 

2. Certain studies raise questions about the efficiency of DSP 
processors in their handling of complex and large applications. 
For example, [16] used a few DSP kernels and multimedia 
applications including speech coding and compression 
programs as the benchmark to compare the performance 
between the general-purpose Pentium II processor and the 
TIC62 DSP processor. They found that although TIC62 
performs well on DSP kernels, its performance on more 
complicated applications is relatively poor largely due to the 
inability of its compiler to exploit the instruction-level 
parallelism among instructions in the application programs
containing frequently occurred control-dependent data 
dependencies. Therefore, how to improve the performance of 
DSP processors on complex applications such as speech 
coding and the more recent 3G wireless application programs 
needs to be investigated. Moreover, Moore’s Law is expected 

to hold true for at least till the end of the decade. Consequently, 
chips will continue to become larger and more complex, thus 
moving the embedded systems in the direction of embedded 
computing [17]. This trend suggests that software will become 
larger and more complex in the years to come, necessitating 
the use of larger and newer applications as benchmarks for 
more meaningful evaluation of the performance of DSP 
platforms.  

B. Benchmark selection criteria 

To facilitate the selection of kernels as benchmarks from 
hundreds of functions in the SMV application, we define 
certain selection criteria as described below.  

1. Kernels must have long execution time, so we select only 
those functions that account for a significant portion of the 
total execution time of the SMV application.  With the 
exception of some small built-in library functions, such 
functions tend to be leaf functions.  Besides their long 
execution time, the code for selected leaf functions can be 
more easily exploited for instruction level parallelism (ILP) 
because they do not call other functions. Therefore, leaf 
functions are useful in measuring optimizing compilers ability 
to extract ILPs. 

2.There are certain groups of functions exhibiting similar code 
structure. Within each group, only the most frequently 
executed one is selected to represent the entire group. In 
addition, the selected function must also meet criterion 1 
mentioned above. 

3.Only those functions that are at a certain level of complexity 
are (considered) candidates for selection because almost all 
DSP processors can efficiently handle simple functions. In this 
paper, complexity of a function is measured by the number of 
DSP operations in its innermost loop. In addition, complexity 
is also measured in terms of a new software metric: the 
modified cyclomatic complexity to be defined shortly in this 
section. 

4. Only those functions having different code structures are 
candidates for selection. Since the major task of our SMV 
benchmark is intended to evaluate various types of DSP 
platforms, using a diverse set of functions with different code 
structures allows the performance of a wide variety of DSP 
platforms to be assessed.  

C. Methodology for building the new benchmark 

In the following, we summarize the methodology used to 
build the new SMV benchmark. 

1. Our work is based on SMV v3.5fx program downloaded 
from [18]. SMV v3.5fx is written in C and it is executed in a 
simulated DSP environment on a PC with the help of a set of 
C library functions. For years, profiling tools have been 
routinely used to gather program execution profiles. Such 
profiling information is often used to improve the design of 
compilers and processor architectures [19]-[23]. In conducting 
our profiling experiment with the new benchmark, we 
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attempted to use but found the popular UNIX profiling tool 
gprof [24] unsuitable for our purpose because the result 
gathered by gprof does not truly reflect the execution profiles 
of the real DSP processors we have been investigating [10]. 
Noticing that in the original SMV program there are certain 
embedded small functions used for tallying the weighted DSP 
operations, we modified and extended the functionality of 
these functions and used them to gather values of WMOPs, 
which stands for Weighted Million of Operations and 
represents the true clock cycles of execution when the SMV 
program runs on real DSP processors. With these modified 
tools, we successfully applied them to nearly 100 functions 
and to more than 250 loops [25].  

2. As mentioned in the previous section, functions selected as 
benchmark must meet the complexity criterion. Cyclomatic 
complexity (CC) measurement was introduced in 1976 [26], 
27] and has since been applied extensively in software 
engineering to calibrate and measure the complexity of 
programs. To adapt it to the analysis of more complex code 
structure in this study that involves ILP, we modified its 
definition and used the notation CC* and its values to evaluate 
and compare  the diversity and complexity of these functions, 
and to determine which of these functions are to be selected as 
kernels. 

The structure of any program can be graphically depicted by 
a control flow graph. In the graph, CC = e – n + p + 1, where e, 
n and p denote the number of edges, nodes, and connected 
components, respectively. In fact, CC is actually the number 
of independent paths through the control flow graph. It can be 
proved that CC is equal to the number of conditions (loops and 

branches in a program) plus one. If there are two programs, 
one with two sequential loops and one with two nested loops, 
the CCs for these two programs are the same since both 
programs contain two conditions only. Considering the fact 
that it is more difficult to optimize nested loops and branches 
at instruction level, we take nested levels into account and 
define a modified cyclomatic complexity, CC*, which equals 
the number of loops and branches in the program, plus the 
number of nested levels of loops and branches. 

3. SMV v3.5fx program consists of two major parts: the 
decoder and the encoder [28]. We studied the encoder part 
only because both parts have similar functions and their code 
structures are also similar. Furthermore, our profiling data 
showed that the encoder part accounts for 86% of the WMOPs 
or total execution time of the whole SMV program [25]. 
Considering the fact that the encoder contains more than 300 
functions and most of them are infrequently called upon [10], 
we therefore focus on the more frequently referenced low-
level leaf functions and used the total combined WMOPs and 
CC* of these functions as criteria to select kernels: the former 
represents the total number of DSP operations and therefore 
reflects the total execution time of those leaf functions and 
their similar functions, and the latter serves as an indicator of 
their code complexity. 

4. To test the new benchmark, we used a sample audio file as 
the input to the SMV program and gathered the inputs to and 
outputs from the eight selected kernel functions in the program. 
These inputs and outputs are then used in the driver programs 
to test the kernels. 

TABLE I   
EIGHT KERNELS OF SMV BENCHMARK 

No. Name CC* C code 
lines

No. of  
loops

Levels 
of nested 

loops
WMOPs Combined 

WMOPs  

WMOPs 
of major 

innermost 
loop

WMOPs 
ratio

F1 FLT_filterAP_fx 3 11 2 2 776 1173 538 69%
F2 LPC_Chebps_fx 1 16 1 1 196 196 139 71%
F3 LPC_autocorrelation_fx 4 10 3 2 166 826 164 99%
F4 FCS_Excit_Enhance_fx 12 30 8 2 174 219 172 99% 
F5 LSF_Q_New_ML_search_fx 32 68 13 3 939 939 859 91%
F6 c_fft_fx 15 52 6 2 288 381 254 88% 
F7 FCB_add_sub_contrib_phi 6 21 1 1 129 183 101 78% 
F8 PIT_LT_Corr_Rmax_fx 10 44 4 2 562 562 360 64%

TABLE II     
MAJOR INNERMOST LOOPS IN KERNEL FUNCTIONS 

Loop count DSP operations in source code 
No.

Max Min 

Cond. 
branch 

C
code
lines Arith/ 

logic 
Mult / 
MAC

Mem. 
fetch Total 

F1 9 9 0 2 0 1 4 5
F2 3 3 0 11 7 4 1 12
F3 16 1 0 1 0 1 4 5
F4 80 34 0 5 3 1 5 9
F5 10 10 0 8  6 2 4 12
F6 32 1 0 13 17 4 10 31
F7 8 1 2 9 5 0 4 9
F8 80 80 0 1 0 1 2 3

Table I shows the eight kernel functions selected from the 
SMV program as the new benchmark. Notice that the total 
combined WMOPs of the eight kernels account for 58% of the 
entire execution time of the SMV encoder program. For each 
of the eight functions in the table, we refer to the innermost 
loop with the largest value of WMOPs as the major innermost 
loop. Dividing the value of the WMOPs of the major 
innermost loops of a function by its WMOPs, we obtain the 
WMOPs ratio, the percentage of the major innermost loop’s 
WMOPs of the whole kernel function. As shown in the last 
column of Table I, the WMOPs of those major innermost 
loops account for nearly 80% of WMOPs of whole set of eight 
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kernel functions. The detailed descriptions of these kernels are 
presented in [10]. Table II presents some characteristics of the 
major innermost loop of eight kernel functions, which can be 
described in terms of loop behavior and program structure. 

III. EXPERIMENTS 

We conducted our experiment on five popular DSP 
processors including Texas Instruments’ TIC64, TIC62 and 
TIC55, and StarCore’s SC 110 and SC140. All kernels are 

compiled by the compilers of the respective DSP processors 
and subsequently run on their simulators. Table III lists the 
major hardware components of these DSP processors. In 
Section IV, we discuss how these architectural features of the 
DSPs such as issue width; numbers of registers, memory ports, 
and function units; hardware loop control; branch delay; and 
load latency might impact on the performance of a processor. 

Table IV displays the numbers of clock cycles and Table V 
lists code sizes of the eight kernel functions of the SMV 
benchmark. 

TABLE III    
 COMPARISON OF DSP ARCHITECTURES  

Processor TIC64 TIC62 TIC55 SC140 SC110 
Issue width 8 8 2 6 3 

Data path 
6 ALU,          

2 multipliers        
(2 16x16 or 4 8x8)  

6 ALU,     
2 multipliers    

(2 16x16) 
2  MAC, 1 ALU,     

1 Shifter 
4 MAC/ALU,     
1 Shifter 

1 MAC/ALU,    
1 Shifter 

Data registers 2 x 32 2 x 16 4 ACC 16 16 

Memory ports 2 (can be 
double bandwidth) 

2 1 2 (can be double 
bandwidth) 

2 (can be double 
bandwidth) 

AGU no no 
1 ALU, 8 addr. reg., 

8 general purpose reg. 
2 AAUs,    16 
addr. reg. 

2 AAUs,
16 addr. reg. 

Pipeline depth 11 11 7 5 5 
Branch delay  6 cycles 6 cycles 5 cycles 4 cycles 4 cycles 
Load latency  5 cycles 5 cycles 1 cycles 2 cycles 2 cycles 

Hardware 
loop support no no for 3 nested levels for 3 nested 

levels
for 3 nested 

levels

TABLE IV     
NUMBER OF CLOCK CYCLES 

No. TIC64 TIC62 TIC55 SC140 SC110 
F1 2994 14632 7825 5446 5619 
F2 51 59 65 35 40 
F3 8664 12920 16155 24040 24085 
F4 7981 23983 13422 23432 23726 
F5 44522 84153 83806 44367 67633 
F6 10681 16247 8119 9334 11523 
F7 231 315 140 138 139 
F8 32960 54486 24188 / * / * 

* Compilers of SC140 and SC110 have bugs for function F8 

TABLE V  
CODE SIZE (bytes) 

No. TIC64 TIC62 TIC55 SC140 SC110 
F1 1104 672 197 194 212 
F2 336 480 189 240 268 
F3 532 736 185 582 496 
F4 1856 1504 360 465 524 
F5 1480 2688 443 1264 1408 
F6 1496 1344 327 1120 1200 
F7 300 512 106 322 352 
F8 1984 2528 381 / /
AM 1077 1308 274 598 637 

*AM represents Arithmetic Mean  

TABLE VI     
NUMBERS OF INSTRUCTIONS AND INSTRUCTION GROUPS OF THE MAJOR INNERMOST LOOPS IN KERNEL FUNCTIONS 

TIC64 TIC62 TIC55 SC140 SC110 No. OPs G I G I G I G I G I 
F1 5 4.5* 13.9* 8 12 4 5 2 5 2 5 
F2 12 13 17 13 23 13 15 10 13 10 11 
F3 5 3 13 3 11 5 6 4 9 4 8 
F4 5 9 34 18 23 4 5 3 5 3 5 
F5 12 4.5* 11.2* 4 24 6 7 8 14 11 14 
F6 31 40 53 78 81 31 38 44 82 66 85 
F7 9 25 32 36 36 18 24 14 15 14 14 
F8 3 6 17 3 10 2 3 /  /   /  /  
AM 9.1 13.5 22.0 20.4 27.5 10.4 12.9 12.1 20.4 15.7 20.3 

* TIC64 compiler unrolls major innermost loop fully 

In order to gain deeper insight into the combined 
performance of the DSP system in relation to processor 
architecture and code structure, we use both dynamic and 
static methods in data gathering. The dynamic data are 
obtained through the use of compilers and simulators while the 

static data for the major innermost loops of the eight kernel 
functions are obtained by examining the generated assembly 
code for those functions using software de-pipelining 
technique reported in [29]. Table VI shows information about 
the major innermost loop for each of the eight kernel functions. 
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In the table, OPs stands for the number of DSP operations of 
the major innermost loop in C source code; I and G represent 
the numbers of instructions and instruction groups in the major 
innermost loop in native DSP assembly code, respectively. It 
is noted that all assembly instructions in each instruction 
group are executed in parallel within the same clock cycle. 

IV. DISCUSSION 

To facilitate the performance comparison of five different 
DSP processors, we normalize the number of clock cycles and 
code size to those of TIC62 as shown in Table VII and VIII, 
respectively. Since performance gain is often achieved at the 
expense of increasing the code size, it is of interest to know 
the relationship between performance and code size and such a 
relationship is presented in Table IX in terms of the product of 
normalized clock cycles and code size. Note that while Tables 
VII and IX use weighted arithmetic mean (WAM) with the 
combined WMOPs of kernel functions as the weights, Table 
VIII uses arithmetic mean. 

To further investigate the effect of architectural and 
hardware features of a DSP processor on its performance, we 
use the approach reported in [30] and define three new 
parameters Ks, Kp, and Kc that are based on OPs, I, and G as 
described below.  

Ks = I/OPs as shown in Table X, which corresponds 
to the code size of a kernel function, because the larger 
the number of assembly instructions for the same number 
of DSP operations, the larger the code size. 

Kp = I/G as shown in Table XI, which reflects the 
amount of instruction-level parallelism; larger Kp means 
more instructions can be executed in parallel. 

Kc = G/OPs as shown in Table XII, which provides a 
measure of execution speed of a kernel function; the 
smaller the number of instruction groups requires less 
execution time for a given piece of code. By definition, 
Kc = Ks / Kp. 

1. From Tables IV and VII, we observe that the number of 
clock cycles of TIC64 is much better than that of TIC62; the 
weighted arithmetic mean of the former is only about 50% of 
the latter. From Tables V and IIX, we note that TIC64’s code 
size is also less than that of TIC62. The major reason for the 
superiority of TIC64 over TIC62 is because of TIC64 has a 
much more efficient compiler, as it is capable of performing 
better optimization such as more sophisticated software 
pipelining and unrolling the innermost loops. It is worthwhile 
to note that TIC55, a non-VLIW DSP, has better performance 
in clock cycles than TIC62; this is because TIC62 compiler 
generates much larger number of instructions and has less 
ability to exploit instruction level parallelism as shown in 
Tables X, XI and XIII. Tables V and VIII show that TIC55 
has the smallest code size among all DSP processors; this is 
due to its non-VLIW architecture and some of its powerful 
specialized instructions typical of traditional DSP processors. 

In Tables VII, VIII and IX, we note that both StarCore 
SC110 and SC140 are quite good in both clock cycles and 
code size. There are two major reasons; first, both of them 
have some powerful specialized instructions such as zero-

overhead loop control instructions and double word load 
instructions, which lead to less number of DSP overall 
assembly instructions as shown in Table X. Second, the 
number of DSP operations in major innermost loops in SMV 
benchmark kernels is not very large, both SC110 and SC140 
have sufficient function units to support moderate values of 
Kp as shown in Table XI.   

TABLE VII    
 NORMALIZED CLOCK CYCLES 

No. TIC64 TIC62 TIC55 SC140 SC110 
F1 0.20 1.00 0.53 0.37 0.38 
F2 0.86 1.00 1.10 0.59 0.68 
F3 0.67 1.00 1.25 1.86 1.86 
F4 0.33 1.00 0.56 0.98 0.99 
F5 0.53 1.00 1.00 0.53 0.80 
F6 0.66 1.00 0.50 0.57 0.71 
F7 0.73 1.00 0.44 0.44 0.44 
F8 0.60 1.00 0.44 / / 

WAM 0.58 1.00 0.71 0.62 0.69 

TABLE VIII  
NORMALIZED CODE SIZE 

No. TIC64 TIC62 TIC55 SC140 SC110 
F1 1.12 1.00 0.29 0.32 0.29 
F2 0.73 1.00 0.39 0.56 0.50 
F3 0.70 1.00 0.25 0.67 0.79 
F4 1.20 1.00 0.24 0.35 0.31 
F5 0.53 1.00 0.16 0.52 0.47 
F6 1.12 1.00 0.24 0.89 0.83 
F7 0.42 1.00 0.21 0.69 0.63 
F8 0.78 1.00 0.15 / / 
AM 0.82 1.00 0.21 0.49 0.46 

TABLE IX   
NORMALIZED CLOCK CYCLES  CODE SIZE 

No. TIC64 TIC62 TIC55 SC140 SC110 
F1 0.23 1.00 0.16 0.12 0.11 
F2 0.63 1.00 0.43 0.33 0.34 
F3 0.47 1.00 0.31 1.25 1.47 
F4 0.40 1.00 0.13 0.34 0.31 
F5 0.29 1.00 0.16 0.28 0.38 
F6 0.74 1.00 0.12 0.51 0.59 
F7 0.31 1.00 0.09 0.30 0.28 
F8 0.47 1.00 0.07 / / 

WAM 0.44 1.00 0.19 0.39 0.43 

TABLE X    
Ks = I/OPs

No. TIC64 TIC62 TIC55 SC140 SC110 
F1 2.1 2.4 1.0 1.0 1.0 
F2 1.4 1.9 1.3 1.1 0.9 
F3 2.6 2.2 1.2 1.8 1.6 
F4 2.2 4.6 1.0 1.0 1.0 
F5 0.9 2.0 0.6 1.2 1.2 
F6 1.7 2.6 1.2 2.6 2.7 
F7 3.6 4.0 2.7 1.7 1.6 
F8 5.7 3.3 1.0 / / 
AM 2.6 2.9 1.2 1.5 1.4 
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TABLE XI    
Kp = I/G

No. TIC64 TIC62 TIC55 SC140 SC110 
F1 3.1 1.5 1.3 2.5 2.5 
F2 1.3 1.8 1.2 1.3 1.1 
F3 4.3 3.7 1.2 2.3 2.0 
F4 3.7 1.3 1.3 1.7 1.7 
F5 2.5 6.0 1.2 1.8 1.3 
F6 1.3 1.0 1.2 1.9 1.3 
F7 1.3 1.0 1.3 1.1 1.0 
F8 2.8 3.3 1.5 / / 

AM. 2.5 2.4 1.3 1.8 1.5 
___AM___
# of issues 0.31 0.31 0.63 0.30 0.52 

TABLE XII   
Kc = G/OPs

No. TIC64 TIC62 TIC55 SC140 SC110 
F1 0.7 1.6 0.8 0.4 0.4 
F2 1.1 1.1 1.1 0.8 0.8 
F3 0.6 0.6 1.0 0.8 0.8 
F4 1.8 3.6 0.8 0.6 0.6 
F5 0.4 0.3 0.5 0.7 0.9 
F6 1.3 2.5 1.0 1.4 2.1 
F7 2.8 4.0 2.0 1.6 1.6 
F8 2.0 1.0 0.7 / / 
AM 1.2 1.8 1.0 0.9 1.0 

TABLE XIII   
COMPILER OPTIMIZATION IN MAJOR INNERMOST LOOPS 

No. Kernel Functions TIC64 TIC62 TIC55 SC140 SC110 

F1 FLT_filterAP_fx fully unrolling software
pipelining

no software 
pipelining

software
pipelining

software
pipelining

F2 LPC_Chebps_fx 
software

pipelining
software

pipelining
no software 
pipelining

no software 
pipelining

no software 
pipelining

F3 LPC_autocorrleation_fx software
pipelining

software
pipelining

no software 
pipelining

software
pipelining

software
pipelining

F4 FCS_Excit_Enhance 
sophisticated

software
pipelining

poor software 
pipelining

no software 
pipelining

no software 
pipelining

no software 
pipelining

F5 LSF_Q_New_ML_search fully unrolling 
software

pipelining
no software 
pipelining

software
pipelining

software
pipelining

F6 c_fft_fx 
no software 
pipelining,     

few ILP 

no software 
pipelining,  

few ILP 

no software 
pipelining

no software 
pipelining

no software 
pipelining

F7 FCB_add_sub_contrib 
no software 
pipelining

no software 
pipelining,  

no ILP 

no software 
pipelining

no software 
pipelining,  

no ILP 

no software 
pipelining, no 

ILP

F8 PIT_LT_Corr_Rmax_fx 
software

pipelining
software

pipelining
no software 
pipelining

/ / 

2. Table XIII summarizes how DSP compilers on optimize the 
major innermost loops. Provided below is a detailed analysis 
of how each kernel function’s clock cycles and code size are 
related to the structure of the program, and the features of the 
DSP processors and compilers. The functions are identified by 
their actual names in the SMV application. 

F1—FLT_filterAP_fx: It is a very short function having a 
simple 2-level nested loop with many statements between 
outer and inner loops; its innermost loop contains only two 
lines and a small loop count. From Table VII, VIII and XIII 
we note that TIC62 does perform software pipelining on 
innermost loop and produces long prelude and postlude, which 
leads it has big clock cycle; TIC64 fully unrolls innermost 
loop, and has much less clock cycle with slight bigger code 
size; TIC55’s major innermost loop has three instructions only 
without any optimization. As a result, its code size is small 
and its execution takes a small number of clock cycles.  

F2—LPC_Chebps_fx: It is a simple function having a 
single for-loop with a large loop body of many DSP 

operations, TIC55 compiler does not perform software 
pipelining, and therefore it has bigger clock cycles as shown in 
Table VII. 

F3—LPC_autocorrelation_fx: It is a very simple function; 
its major innermost loop has one C statement only. All 
processors except TIC55 perform software pipelining on it and 
achieve high instruction-level parallelism as shown in Table 
XI. As to TIC55, its compiler generates only a small number 
of assembly instructions for the function so neither its clock 
cycles is high nor its code size large as shown in Tables VII 
and VIII. 

F4—FCS_Excit_Enhance: It has three 2-level nested loops 
plus three separate single level loops. TIC62 performs 
software pipelining but does so very poorly on the major 
innermost loop; almost no instruction level parallelism 
available in the code has been exploited. On the other hand, 
the compiler of TIC64 effectively performs software 
pipelining on all innermost loops, thus reducing clock cycles 
of the major innermost loop by nearly two third at a small 
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expense of increasing the code size, as shown in Tables VII 
and  VIII. 

F5—LSF_Q_New_ML_search: The function is rather 
complicated as it contains a 3-level nested loop. The loop 
count of its major innermost loop is 10; however its second 
level loop has a much larger loop count. TIC62 performs 
software pipelining on its innermost loop, even though the 
software pipelined loop body is pretty compacted, the overall 
speed up is offset by the long prelude and postlude. TIC64 
unrolls the major innermost loop fully; although the innermost 
loop body is less compacted than TIC62, both the number of 
clock cycles and code size are much better than TIC62 as 
shown in Tables VII, VIII and IX. 

F6—c_fft_fx: It is a bit more complicated than the usual 
FFT program with a moderate CC* value, none of DSP 
compilers perform software pipelining on innermost loop of 
this function. Comparing with TIC62, TIC64 has less clock 
cycle because it has twice as many registers as the other and it 
has better scheduling to avoid load latency. However, the 
performance of both DSPs is far behind the theoretical result 
reported in [31]. On the other hand, as shown in Tables X and 
XI, TIC55 performs well and has small number of clock 
cycles because both of its Ks and Kp are small due to its more 
powerful specialized instructions. 

F7—FCB_add_sub_contrib: It has a single level loop with 
nested conditional branches that restrict the instruction-level 
parallelism; none of the compilers performs software 
pipelining. Therefore, with its more powerful specialized 
instructions, TIC55 performs better in terms of both speed and 
code size; this is shown in Tables VII and VIII. 

F8—PIT_LT_Corr_Rmax_fx: This function has a 3-level 
nested loop. The innermost loop is very simple with one MAC 
operation only. However, the second level loop is quite 
complicated. Even though TIC64 uses a double bandwidth 
memory fetch instruction, the length of its software pipelined 
major innermost loop is 5, which is much larger than 2 of 
TIC55’s. This is due to the specialized powerful MAC 
instruction capable of performing two memory fetch and the 
MAC instruction simultaneously. Consequently, TIC55 has 
the best results both in clock cycles and code size as shown in 
Tables VII and VIII, respectively.  

3.Table XIV lists the average DSP operations in the innermost 
loops of the SMV application [25] and our eight kernel 
functions, which shows that the total number of DSP 
operations in innermost loops is limited.  Table XV presents 
the maximum number of instructions in instruction groups.  
Based on our experimental data, the instruction level 
parallelism  represented by the average Kp = I/G and the 
maximum number of instructions in instruction groups for the 
eight kernel functions is far below the number of issues in all 
VLIW DSP processors. This is shown in Tables XI and XV. 

Table XIV also shows that memory fetch operation takes 
large portion and multiplication operations take small portion 
of the total number of DSP operations. It helps explain why 
some DSP processors (such as TIC64, SC140 and SC110) 

with double memory fetch bandwidth have better performance 
than TIC62.  

TABLE XIV   
AVERAGE NUMBER OF DSP OPERATIONS IN INNERMOST LOOPS 

Major functions in 
SMV encoder Kernels

ALU 2.1 2.8 

Mult 0.8 1.2 

Memory 3.1 3.7 

Total 6 7.7 

TABLE XV   
MAXIMUM NUMBER OF INSTRUCTIONS  

IN INSTRUCTION GROUPS 

No. TIC64 TIC62 TIC55 SC140 SC110 
F1 5 2 2 3 3 
F2 3 5 2 4 2 
F3 5 6 2 4 3 
F4 6 2 2 3 3 
F5 4 7 2 4 2 
F6 3 2 2 4 2 
F7 4 1 2 2 1 
F8 3 5 2 / / 
AM 4 4 2 3 2 

___AM__
 # of issues 0.52 0.47 1.00 0.57 0.76 

V. CONCLUSION 

1. Our experiment with the new SMV benchmark shows that, 
in comparison with the VLIW type, there are certain 
advantages of the traditional DSP processor architecture. 
Although we did not consider the power consumption, which 
has much less code size and the speed performance is also 
comparable with VLIW DSP architecture. We suggest that 
VLIW DSP processors should have more balanced ratio of 
various kinds of function units and keep some powerful 
instructions under the support of hardware. 
2. SMV benchmark has some kernel functions which are quite 
different from traditional DSP kernels; however their major 
innermost loops are relatively short. It implies either too many 
function units are unnecessary or more sophisticated loop 
optimization approaches are needed. For example the optimal 
loop unrolling combining with software pipelining. 
3.More sophisticated software pipelining methods for 
complicated loops such as FFT and with nested conditional 
branches are needed. 
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