
Performance Analysis of Digital Signal Processors
Using SMV Benchmark

Erh-Wen Hu, Cyril S. Ku, Andrew T. Russo, Bogong Su and Jian Wang

Abstract—Unlike general-purpose processors, digital signal
processors (DSP processors) are strongly application-dependent. To
meet the needs for diverse applications, a wide variety of DSP
processors based on different architectures ranging from the
traditional to VLIW have been introduced to the market over the
years. The functionality, performance, and cost of these processors
vary over a wide range. In order to select a processor that meets the
design criteria for an application, processor performance is usually
the major concern for digital signal processing (DSP) application
developers. Performance data are also essential for the designers of
DSP processors to improve their design. Consequently, several DSP
performance benchmarks have been proposed over the past decade or
so. However, none of these benchmarks seem to have included recent
new DSP applications.

In this paper, we use a new benchmark that we recently developed
to compare the performance of popular DSP processors from Texas
Instruments and StarCore. The new benchmark is based on the
Selectable Mode Vocoder (SMV), a speech-coding program from the
recent third generation (3G) wireless voice applications. All
benchmark kernels are compiled by the compilers of the respective
DSP processors and run on their simulators. Weighted arithmetic
mean of clock cycles and arithmetic mean of code size are used to
compare the performance of five DSP processors.

In addition, we studied how the performance of a processor is
affected by code structure, features of processor architecture and
optimization of compiler. The extensive experimental data gathered,
analyzed, and presented in this paper should be helpful for DSP
processor and compiler designers to meet their specific design goals.

Keywords—digital signal processors, DSP benchmark,
instruction level parallelism, modified cyclomatic complexity,
performance analysis.

E-W. Hu is with the Dept. of Computer Science, William Paterson
University, Wayne, NJ 07470 USA (Phone: 973-720-2196, fax: 973-720-2973,
e-mail: hue@wpunj.edu)

 C. S. Ku is with the Dept. of Computer Science, William Paterson
University, Wayne, NJ 07470 USA (Phone: 973-720-2960, fax: 973-720-2973,
e-mail: kuc@wpunj.edu)

A. T. Russo was a CS major student in the Dept. of Computer Science,
William Paterson University. He is now with ET International, 1501 Cash
Mill Rd Newark, DE 19711 (Phone: 845-774-9675, e-mail:
xavier776@yahoo.com)

 B. Su is with the Dept. of Computer Science, William Paterson University,
Wayne, NJ 07470 USA (Phone: 973-720-2979, fax: 973-720-2973, e-mail:
sub@wpunj.edu)

J. Wang is with Wireless Speech and Data Processing, Nortel Networks,
2351 Blvd. Alfred-Nobel, St. Laurent, QC Canada, H4S 2A9 (Phone: 514-
818-2541, e-mail: jiwang@nortelnetworks.com)

I. INTRODUCTION

HE rapid growth enjoyed by the DSP processor industry
over the past few years is expected to continue at a

double-digit annual rate [1]. To address the need for a wide
variety of applications, various types of DSP processors based
on different architectures have been introduced to the market
[2]-[5]. As a result, performance measurement of DSP
processors has become an important issue for both processor
manufacturers and application developers. Manufacturers rely
on performance data to improve processor design, and
application developers use them to select a processor that best
meets their design criteria.

Over the past decade, several performance benchmarks such
as BDTI [6], EEMBC [7], MediaBench [8] and MiBench [9]
have been proposed for DSP processors. However, none of
these benchmarks seems to have included most recent
applications. Moreover, none seems to have investigated how
the performance of a processor can be affected by code
structure, features of processor architecture and optimization
of compiler. Such information can be important in gaining
insight into how a DSP processor and its compiler handle
various applications and thus helpful in improving processor
design.

To address the aforementioned concerns we have recently
developed and proposed a new benchmark [10] based on the
Selectable Mode Vocoder (SMV), a speech-coding program
from the third generation (3G) wireless applications [11].
SMV is known as the 3GPP2 standard speech codec for the
CDMA2000 wireless network. Although it has been replaced
by the fourth generation vocoder (4GV) recently, SMV
remains to be one of the most efficient and sophisticated
speech codecs capable of operating in modes at different bit
rates. Also, the SMV fixed point C code consists of most of
the common speech coding functions which exist in other
CDMA wireless speech vocoders.

The new benchmark, referred to as the SMV benchmark in
this paper, consists of eight kernels written in C language. Our
goal in this paper is to use the new benchmark to measure the
performance of popular DSP platforms. Since it is difficult to
isolate the effect of the compiler, performance of a DSP
platform is defined as the combined performance of both the
DSP processor and its compiler [12]. In order to gain insight
into how DSP compilers and DSP processors might be
improved, we also studied how the performance of a processor
is affected by the code structure of the benchmark programs;

T

International Journal of Information and Communication Engineering 5:3 2009

223

certain architectural features of the processors including issue
width, number of the available registers and functional units,
support for hardware loop controls, branch delays, and load
latency; and the characteristics of DSP compilers such as their
ability to exploit instruction level parallelism (ILP).

We conducted extensive series of experiments on five
popular DSP processors including Texas Instruments’ TIC64,
TIC62 [13] and TIC55, and StarCore’s SC 110 and SC140
DSP processors. All kernels of the new benchmark are
compiled by the compilers of the respective DSP processors
and then executed on their simulators.

This paper is organized into five sections. In section II, we
briefly review the rationale for our choosing the SMV as the
new benchmark. In the same section, we also define the
selection criteria for the benchmark and our methodology in
building it (in section II). In section III, we discuss our
experimental procedure and present the experimental results.
In section IV, we discuss our experimental results and relate
them to practical design considerations for both the DSP
processors and their compilers. In section V, we provide our
concluding remarks.

II. THE SMV BENCHMARK PROGRAM

As mentioned in the previous section, the new SMV
benchmark consists of eight kernels chosen from the SMV
program [14] for 3G voice wireless cell phone application.
Provided below are brief summaries of A) the rationale based
on which the SMV is selected as our new DSP benchmark, B)
the criteria used in identifying and building our benchmark
programs, and C) the methodologies adopted in conducting
our experiment and analyzing the experimental results.

A. Rationale for selecting the SMV as the new DSP benchmark

1.Wireless communication is a major DSP application. In
dollar amount, it accounts for almost three quarters of the
entire digital signal processor market [15]. To measure the
performance of DSP processors, some manufacturers still use
the 2G wireless applications as their benchmarks. To the best
of our knowledge, there has been no report on using the newer
3G wireless application to measure the performance of DSP
processors.

2. Certain studies raise questions about the efficiency of DSP
processors in their handling of complex and large applications.
For example, [16] used a few DSP kernels and multimedia
applications including speech coding and compression
programs as the benchmark to compare the performance
between the general-purpose Pentium II processor and the
TIC62 DSP processor. They found that although TIC62
performs well on DSP kernels, its performance on more
complicated applications is relatively poor largely due to the
inability of its compiler to exploit the instruction-level
parallelism among instructions in the application programs
containing frequently occurred control-dependent data
dependencies. Therefore, how to improve the performance of
DSP processors on complex applications such as speech
coding and the more recent 3G wireless application programs
needs to be investigated. Moreover, Moore’s Law is expected

to hold true for at least till the end of the decade. Consequently,
chips will continue to become larger and more complex, thus
moving the embedded systems in the direction of embedded
computing [17]. This trend suggests that software will become
larger and more complex in the years to come, necessitating
the use of larger and newer applications as benchmarks for
more meaningful evaluation of the performance of DSP
platforms.

B. Benchmark selection criteria

To facilitate the selection of kernels as benchmarks from
hundreds of functions in the SMV application, we define
certain selection criteria as described below.

1. Kernels must have long execution time, so we select only
those functions that account for a significant portion of the
total execution time of the SMV application. With the
exception of some small built-in library functions, such
functions tend to be leaf functions. Besides their long
execution time, the code for selected leaf functions can be
more easily exploited for instruction level parallelism (ILP)
because they do not call other functions. Therefore, leaf
functions are useful in measuring optimizing compilers ability
to extract ILPs.

2.There are certain groups of functions exhibiting similar code
structure. Within each group, only the most frequently
executed one is selected to represent the entire group. In
addition, the selected function must also meet criterion 1
mentioned above.

3.Only those functions that are at a certain level of complexity
are (considered) candidates for selection because almost all
DSP processors can efficiently handle simple functions. In this
paper, complexity of a function is measured by the number of
DSP operations in its innermost loop. In addition, complexity
is also measured in terms of a new software metric: the
modified cyclomatic complexity to be defined shortly in this
section.

4. Only those functions having different code structures are
candidates for selection. Since the major task of our SMV
benchmark is intended to evaluate various types of DSP
platforms, using a diverse set of functions with different code
structures allows the performance of a wide variety of DSP
platforms to be assessed.

C. Methodology for building the new benchmark

In the following, we summarize the methodology used to
build the new SMV benchmark.

1. Our work is based on SMV v3.5fx program downloaded
from [18]. SMV v3.5fx is written in C and it is executed in a
simulated DSP environment on a PC with the help of a set of
C library functions. For years, profiling tools have been
routinely used to gather program execution profiles. Such
profiling information is often used to improve the design of
compilers and processor architectures [19]-[23]. In conducting
our profiling experiment with the new benchmark, we

International Journal of Information and Communication Engineering 5:3 2009

224

attempted to use but found the popular UNIX profiling tool
gprof [24] unsuitable for our purpose because the result
gathered by gprof does not truly reflect the execution profiles
of the real DSP processors we have been investigating [10].
Noticing that in the original SMV program there are certain
embedded small functions used for tallying the weighted DSP
operations, we modified and extended the functionality of
these functions and used them to gather values of WMOPs,
which stands for Weighted Million of Operations and
represents the true clock cycles of execution when the SMV
program runs on real DSP processors. With these modified
tools, we successfully applied them to nearly 100 functions
and to more than 250 loops [25].

2. As mentioned in the previous section, functions selected as
benchmark must meet the complexity criterion. Cyclomatic
complexity (CC) measurement was introduced in 1976 [26],
27] and has since been applied extensively in software
engineering to calibrate and measure the complexity of
programs. To adapt it to the analysis of more complex code
structure in this study that involves ILP, we modified its
definition and used the notation CC* and its values to evaluate
and compare the diversity and complexity of these functions,
and to determine which of these functions are to be selected as
kernels.

The structure of any program can be graphically depicted by
a control flow graph. In the graph, CC = e – n + p + 1, where e,
n and p denote the number of edges, nodes, and connected
components, respectively. In fact, CC is actually the number
of independent paths through the control flow graph. It can be
proved that CC is equal to the number of conditions (loops and

branches in a program) plus one. If there are two programs,
one with two sequential loops and one with two nested loops,
the CCs for these two programs are the same since both
programs contain two conditions only. Considering the fact
that it is more difficult to optimize nested loops and branches
at instruction level, we take nested levels into account and
define a modified cyclomatic complexity, CC*, which equals
the number of loops and branches in the program, plus the
number of nested levels of loops and branches.

3. SMV v3.5fx program consists of two major parts: the
decoder and the encoder [28]. We studied the encoder part
only because both parts have similar functions and their code
structures are also similar. Furthermore, our profiling data
showed that the encoder part accounts for 86% of the WMOPs
or total execution time of the whole SMV program [25].
Considering the fact that the encoder contains more than 300
functions and most of them are infrequently called upon [10],
we therefore focus on the more frequently referenced low-
level leaf functions and used the total combined WMOPs and
CC* of these functions as criteria to select kernels: the former
represents the total number of DSP operations and therefore
reflects the total execution time of those leaf functions and
their similar functions, and the latter serves as an indicator of
their code complexity.

4. To test the new benchmark, we used a sample audio file as
the input to the SMV program and gathered the inputs to and
outputs from the eight selected kernel functions in the program.
These inputs and outputs are then used in the driver programs
to test the kernels.

TABLE I
EIGHT KERNELS OF SMV BENCHMARK

No. Name CC* C code
lines

No. of
loops

Levels
of nested

loops
WMOPs Combined

WMOPs

WMOPs
of major

innermost
loop

WMOPs
ratio

F1 FLT_filterAP_fx 3 11 2 2 776 1173 538 69%
F2 LPC_Chebps_fx 1 16 1 1 196 196 139 71%
F3 LPC_autocorrelation_fx 4 10 3 2 166 826 164 99%
F4 FCS_Excit_Enhance_fx 12 30 8 2 174 219 172 99%
F5 LSF_Q_New_ML_search_fx 32 68 13 3 939 939 859 91%
F6 c_fft_fx 15 52 6 2 288 381 254 88%
F7 FCB_add_sub_contrib_phi 6 21 1 1 129 183 101 78%
F8 PIT_LT_Corr_Rmax_fx 10 44 4 2 562 562 360 64%

TABLE II
MAJOR INNERMOST LOOPS IN KERNEL FUNCTIONS

Loop count DSP operations in source code
No.

Max Min

Cond.
branch

C
code
lines Arith/

logic
Mult /
MAC

Mem.
fetch Total

F1 9 9 0 2 0 1 4 5
F2 3 3 0 11 7 4 1 12
F3 16 1 0 1 0 1 4 5
F4 80 34 0 5 3 1 5 9
F5 10 10 0 8 6 2 4 12
F6 32 1 0 13 17 4 10 31
F7 8 1 2 9 5 0 4 9
F8 80 80 0 1 0 1 2 3

Table I shows the eight kernel functions selected from the
SMV program as the new benchmark. Notice that the total
combined WMOPs of the eight kernels account for 58% of the
entire execution time of the SMV encoder program. For each
of the eight functions in the table, we refer to the innermost
loop with the largest value of WMOPs as the major innermost
loop. Dividing the value of the WMOPs of the major
innermost loops of a function by its WMOPs, we obtain the
WMOPs ratio, the percentage of the major innermost loop’s
WMOPs of the whole kernel function. As shown in the last
column of Table I, the WMOPs of those major innermost
loops account for nearly 80% of WMOPs of whole set of eight

International Journal of Information and Communication Engineering 5:3 2009

225

kernel functions. The detailed descriptions of these kernels are
presented in [10]. Table II presents some characteristics of the
major innermost loop of eight kernel functions, which can be
described in terms of loop behavior and program structure.

III. EXPERIMENTS

We conducted our experiment on five popular DSP
processors including Texas Instruments’ TIC64, TIC62 and
TIC55, and StarCore’s SC 110 and SC140. All kernels are

compiled by the compilers of the respective DSP processors
and subsequently run on their simulators. Table III lists the
major hardware components of these DSP processors. In
Section IV, we discuss how these architectural features of the
DSPs such as issue width; numbers of registers, memory ports,
and function units; hardware loop control; branch delay; and
load latency might impact on the performance of a processor.

Table IV displays the numbers of clock cycles and Table V
lists code sizes of the eight kernel functions of the SMV
benchmark.

TABLE III
 COMPARISON OF DSP ARCHITECTURES

Processor TIC64 TIC62 TIC55 SC140 SC110
Issue width 8 8 2 6 3

Data path
6 ALU,

2 multipliers
(2 16x16 or 4 8x8)

6 ALU,
2 multipliers

(2 16x16)
2 MAC, 1 ALU,

1 Shifter
4 MAC/ALU,
1 Shifter

1 MAC/ALU,
1 Shifter

Data registers 2 x 32 2 x 16 4 ACC 16 16

Memory ports 2 (can be
double bandwidth)

2 1 2 (can be double
bandwidth)

2 (can be double
bandwidth)

AGU no no
1 ALU, 8 addr. reg.,

8 general purpose reg.
2 AAUs, 16
addr. reg.

2 AAUs,
16 addr. reg.

Pipeline depth 11 11 7 5 5
Branch delay 6 cycles 6 cycles 5 cycles 4 cycles 4 cycles
Load latency 5 cycles 5 cycles 1 cycles 2 cycles 2 cycles

Hardware
loop support no no for 3 nested levels for 3 nested

levels
for 3 nested

levels

TABLE IV
NUMBER OF CLOCK CYCLES

No. TIC64 TIC62 TIC55 SC140 SC110
F1 2994 14632 7825 5446 5619
F2 51 59 65 35 40
F3 8664 12920 16155 24040 24085
F4 7981 23983 13422 23432 23726
F5 44522 84153 83806 44367 67633
F6 10681 16247 8119 9334 11523
F7 231 315 140 138 139
F8 32960 54486 24188 / * / *

* Compilers of SC140 and SC110 have bugs for function F8

TABLE V
CODE SIZE (bytes)

No. TIC64 TIC62 TIC55 SC140 SC110
F1 1104 672 197 194 212
F2 336 480 189 240 268
F3 532 736 185 582 496
F4 1856 1504 360 465 524
F5 1480 2688 443 1264 1408
F6 1496 1344 327 1120 1200
F7 300 512 106 322 352
F8 1984 2528 381 / /
AM 1077 1308 274 598 637

*AM represents Arithmetic Mean

TABLE VI
NUMBERS OF INSTRUCTIONS AND INSTRUCTION GROUPS OF THE MAJOR INNERMOST LOOPS IN KERNEL FUNCTIONS

TIC64 TIC62 TIC55 SC140 SC110 No. OPs G I G I G I G I G I
F1 5 4.5* 13.9* 8 12 4 5 2 5 2 5
F2 12 13 17 13 23 13 15 10 13 10 11
F3 5 3 13 3 11 5 6 4 9 4 8
F4 5 9 34 18 23 4 5 3 5 3 5
F5 12 4.5* 11.2* 4 24 6 7 8 14 11 14
F6 31 40 53 78 81 31 38 44 82 66 85
F7 9 25 32 36 36 18 24 14 15 14 14
F8 3 6 17 3 10 2 3 / / / /
AM 9.1 13.5 22.0 20.4 27.5 10.4 12.9 12.1 20.4 15.7 20.3

* TIC64 compiler unrolls major innermost loop fully

In order to gain deeper insight into the combined
performance of the DSP system in relation to processor
architecture and code structure, we use both dynamic and
static methods in data gathering. The dynamic data are
obtained through the use of compilers and simulators while the

static data for the major innermost loops of the eight kernel
functions are obtained by examining the generated assembly
code for those functions using software de-pipelining
technique reported in [29]. Table VI shows information about
the major innermost loop for each of the eight kernel functions.

International Journal of Information and Communication Engineering 5:3 2009

226

In the table, OPs stands for the number of DSP operations of
the major innermost loop in C source code; I and G represent
the numbers of instructions and instruction groups in the major
innermost loop in native DSP assembly code, respectively. It
is noted that all assembly instructions in each instruction
group are executed in parallel within the same clock cycle.

IV. DISCUSSION

To facilitate the performance comparison of five different
DSP processors, we normalize the number of clock cycles and
code size to those of TIC62 as shown in Table VII and VIII,
respectively. Since performance gain is often achieved at the
expense of increasing the code size, it is of interest to know
the relationship between performance and code size and such a
relationship is presented in Table IX in terms of the product of
normalized clock cycles and code size. Note that while Tables
VII and IX use weighted arithmetic mean (WAM) with the
combined WMOPs of kernel functions as the weights, Table
VIII uses arithmetic mean.

To further investigate the effect of architectural and
hardware features of a DSP processor on its performance, we
use the approach reported in [30] and define three new
parameters Ks, Kp, and Kc that are based on OPs, I, and G as
described below.

Ks = I/OPs as shown in Table X, which corresponds
to the code size of a kernel function, because the larger
the number of assembly instructions for the same number
of DSP operations, the larger the code size.

Kp = I/G as shown in Table XI, which reflects the
amount of instruction-level parallelism; larger Kp means
more instructions can be executed in parallel.

Kc = G/OPs as shown in Table XII, which provides a
measure of execution speed of a kernel function; the
smaller the number of instruction groups requires less
execution time for a given piece of code. By definition,
Kc = Ks / Kp.

1. From Tables IV and VII, we observe that the number of
clock cycles of TIC64 is much better than that of TIC62; the
weighted arithmetic mean of the former is only about 50% of
the latter. From Tables V and IIX, we note that TIC64’s code
size is also less than that of TIC62. The major reason for the
superiority of TIC64 over TIC62 is because of TIC64 has a
much more efficient compiler, as it is capable of performing
better optimization such as more sophisticated software
pipelining and unrolling the innermost loops. It is worthwhile
to note that TIC55, a non-VLIW DSP, has better performance
in clock cycles than TIC62; this is because TIC62 compiler
generates much larger number of instructions and has less
ability to exploit instruction level parallelism as shown in
Tables X, XI and XIII. Tables V and VIII show that TIC55
has the smallest code size among all DSP processors; this is
due to its non-VLIW architecture and some of its powerful
specialized instructions typical of traditional DSP processors.

In Tables VII, VIII and IX, we note that both StarCore
SC110 and SC140 are quite good in both clock cycles and
code size. There are two major reasons; first, both of them
have some powerful specialized instructions such as zero-

overhead loop control instructions and double word load
instructions, which lead to less number of DSP overall
assembly instructions as shown in Table X. Second, the
number of DSP operations in major innermost loops in SMV
benchmark kernels is not very large, both SC110 and SC140
have sufficient function units to support moderate values of
Kp as shown in Table XI.

TABLE VII
 NORMALIZED CLOCK CYCLES

No. TIC64 TIC62 TIC55 SC140 SC110
F1 0.20 1.00 0.53 0.37 0.38
F2 0.86 1.00 1.10 0.59 0.68
F3 0.67 1.00 1.25 1.86 1.86
F4 0.33 1.00 0.56 0.98 0.99
F5 0.53 1.00 1.00 0.53 0.80
F6 0.66 1.00 0.50 0.57 0.71
F7 0.73 1.00 0.44 0.44 0.44
F8 0.60 1.00 0.44 / /

WAM 0.58 1.00 0.71 0.62 0.69

TABLE VIII
NORMALIZED CODE SIZE

No. TIC64 TIC62 TIC55 SC140 SC110
F1 1.12 1.00 0.29 0.32 0.29
F2 0.73 1.00 0.39 0.56 0.50
F3 0.70 1.00 0.25 0.67 0.79
F4 1.20 1.00 0.24 0.35 0.31
F5 0.53 1.00 0.16 0.52 0.47
F6 1.12 1.00 0.24 0.89 0.83
F7 0.42 1.00 0.21 0.69 0.63
F8 0.78 1.00 0.15 / /
AM 0.82 1.00 0.21 0.49 0.46

TABLE IX
NORMALIZED CLOCK CYCLES CODE SIZE

No. TIC64 TIC62 TIC55 SC140 SC110
F1 0.23 1.00 0.16 0.12 0.11
F2 0.63 1.00 0.43 0.33 0.34
F3 0.47 1.00 0.31 1.25 1.47
F4 0.40 1.00 0.13 0.34 0.31
F5 0.29 1.00 0.16 0.28 0.38
F6 0.74 1.00 0.12 0.51 0.59
F7 0.31 1.00 0.09 0.30 0.28
F8 0.47 1.00 0.07 / /

WAM 0.44 1.00 0.19 0.39 0.43

TABLE X
Ks = I/OPs

No. TIC64 TIC62 TIC55 SC140 SC110
F1 2.1 2.4 1.0 1.0 1.0
F2 1.4 1.9 1.3 1.1 0.9
F3 2.6 2.2 1.2 1.8 1.6
F4 2.2 4.6 1.0 1.0 1.0
F5 0.9 2.0 0.6 1.2 1.2
F6 1.7 2.6 1.2 2.6 2.7
F7 3.6 4.0 2.7 1.7 1.6
F8 5.7 3.3 1.0 / /
AM 2.6 2.9 1.2 1.5 1.4

International Journal of Information and Communication Engineering 5:3 2009

227

TABLE XI
Kp = I/G

No. TIC64 TIC62 TIC55 SC140 SC110
F1 3.1 1.5 1.3 2.5 2.5
F2 1.3 1.8 1.2 1.3 1.1
F3 4.3 3.7 1.2 2.3 2.0
F4 3.7 1.3 1.3 1.7 1.7
F5 2.5 6.0 1.2 1.8 1.3
F6 1.3 1.0 1.2 1.9 1.3
F7 1.3 1.0 1.3 1.1 1.0
F8 2.8 3.3 1.5 / /

AM. 2.5 2.4 1.3 1.8 1.5
___AM___
of issues 0.31 0.31 0.63 0.30 0.52

TABLE XII
Kc = G/OPs

No. TIC64 TIC62 TIC55 SC140 SC110
F1 0.7 1.6 0.8 0.4 0.4
F2 1.1 1.1 1.1 0.8 0.8
F3 0.6 0.6 1.0 0.8 0.8
F4 1.8 3.6 0.8 0.6 0.6
F5 0.4 0.3 0.5 0.7 0.9
F6 1.3 2.5 1.0 1.4 2.1
F7 2.8 4.0 2.0 1.6 1.6
F8 2.0 1.0 0.7 / /
AM 1.2 1.8 1.0 0.9 1.0

TABLE XIII
COMPILER OPTIMIZATION IN MAJOR INNERMOST LOOPS

No. Kernel Functions TIC64 TIC62 TIC55 SC140 SC110

F1 FLT_filterAP_fx fully unrolling software
pipelining

no software
pipelining

software
pipelining

software
pipelining

F2 LPC_Chebps_fx
software

pipelining
software

pipelining
no software
pipelining

no software
pipelining

no software
pipelining

F3 LPC_autocorrleation_fx software
pipelining

software
pipelining

no software
pipelining

software
pipelining

software
pipelining

F4 FCS_Excit_Enhance
sophisticated

software
pipelining

poor software
pipelining

no software
pipelining

no software
pipelining

no software
pipelining

F5 LSF_Q_New_ML_search fully unrolling
software

pipelining
no software
pipelining

software
pipelining

software
pipelining

F6 c_fft_fx
no software
pipelining,

few ILP

no software
pipelining,

few ILP

no software
pipelining

no software
pipelining

no software
pipelining

F7 FCB_add_sub_contrib
no software
pipelining

no software
pipelining,

no ILP

no software
pipelining

no software
pipelining,

no ILP

no software
pipelining, no

ILP

F8 PIT_LT_Corr_Rmax_fx
software

pipelining
software

pipelining
no software
pipelining

/ /

2. Table XIII summarizes how DSP compilers on optimize the
major innermost loops. Provided below is a detailed analysis
of how each kernel function’s clock cycles and code size are
related to the structure of the program, and the features of the
DSP processors and compilers. The functions are identified by
their actual names in the SMV application.

F1—FLT_filterAP_fx: It is a very short function having a
simple 2-level nested loop with many statements between
outer and inner loops; its innermost loop contains only two
lines and a small loop count. From Table VII, VIII and XIII
we note that TIC62 does perform software pipelining on
innermost loop and produces long prelude and postlude, which
leads it has big clock cycle; TIC64 fully unrolls innermost
loop, and has much less clock cycle with slight bigger code
size; TIC55’s major innermost loop has three instructions only
without any optimization. As a result, its code size is small
and its execution takes a small number of clock cycles.

F2—LPC_Chebps_fx: It is a simple function having a
single for-loop with a large loop body of many DSP

operations, TIC55 compiler does not perform software
pipelining, and therefore it has bigger clock cycles as shown in
Table VII.

F3—LPC_autocorrelation_fx: It is a very simple function;
its major innermost loop has one C statement only. All
processors except TIC55 perform software pipelining on it and
achieve high instruction-level parallelism as shown in Table
XI. As to TIC55, its compiler generates only a small number
of assembly instructions for the function so neither its clock
cycles is high nor its code size large as shown in Tables VII
and VIII.

F4—FCS_Excit_Enhance: It has three 2-level nested loops
plus three separate single level loops. TIC62 performs
software pipelining but does so very poorly on the major
innermost loop; almost no instruction level parallelism
available in the code has been exploited. On the other hand,
the compiler of TIC64 effectively performs software
pipelining on all innermost loops, thus reducing clock cycles
of the major innermost loop by nearly two third at a small

International Journal of Information and Communication Engineering 5:3 2009

228

expense of increasing the code size, as shown in Tables VII
and VIII.

F5—LSF_Q_New_ML_search: The function is rather
complicated as it contains a 3-level nested loop. The loop
count of its major innermost loop is 10; however its second
level loop has a much larger loop count. TIC62 performs
software pipelining on its innermost loop, even though the
software pipelined loop body is pretty compacted, the overall
speed up is offset by the long prelude and postlude. TIC64
unrolls the major innermost loop fully; although the innermost
loop body is less compacted than TIC62, both the number of
clock cycles and code size are much better than TIC62 as
shown in Tables VII, VIII and IX.

F6—c_fft_fx: It is a bit more complicated than the usual
FFT program with a moderate CC* value, none of DSP
compilers perform software pipelining on innermost loop of
this function. Comparing with TIC62, TIC64 has less clock
cycle because it has twice as many registers as the other and it
has better scheduling to avoid load latency. However, the
performance of both DSPs is far behind the theoretical result
reported in [31]. On the other hand, as shown in Tables X and
XI, TIC55 performs well and has small number of clock
cycles because both of its Ks and Kp are small due to its more
powerful specialized instructions.

F7—FCB_add_sub_contrib: It has a single level loop with
nested conditional branches that restrict the instruction-level
parallelism; none of the compilers performs software
pipelining. Therefore, with its more powerful specialized
instructions, TIC55 performs better in terms of both speed and
code size; this is shown in Tables VII and VIII.

F8—PIT_LT_Corr_Rmax_fx: This function has a 3-level
nested loop. The innermost loop is very simple with one MAC
operation only. However, the second level loop is quite
complicated. Even though TIC64 uses a double bandwidth
memory fetch instruction, the length of its software pipelined
major innermost loop is 5, which is much larger than 2 of
TIC55’s. This is due to the specialized powerful MAC
instruction capable of performing two memory fetch and the
MAC instruction simultaneously. Consequently, TIC55 has
the best results both in clock cycles and code size as shown in
Tables VII and VIII, respectively.

3.Table XIV lists the average DSP operations in the innermost
loops of the SMV application [25] and our eight kernel
functions, which shows that the total number of DSP
operations in innermost loops is limited. Table XV presents
the maximum number of instructions in instruction groups.
Based on our experimental data, the instruction level
parallelism represented by the average Kp = I/G and the
maximum number of instructions in instruction groups for the
eight kernel functions is far below the number of issues in all
VLIW DSP processors. This is shown in Tables XI and XV.

Table XIV also shows that memory fetch operation takes
large portion and multiplication operations take small portion
of the total number of DSP operations. It helps explain why
some DSP processors (such as TIC64, SC140 and SC110)

with double memory fetch bandwidth have better performance
than TIC62.

TABLE XIV
AVERAGE NUMBER OF DSP OPERATIONS IN INNERMOST LOOPS

Major functions in
SMV encoder Kernels

ALU 2.1 2.8

Mult 0.8 1.2

Memory 3.1 3.7

Total 6 7.7

TABLE XV
MAXIMUM NUMBER OF INSTRUCTIONS

IN INSTRUCTION GROUPS

No. TIC64 TIC62 TIC55 SC140 SC110
F1 5 2 2 3 3
F2 3 5 2 4 2
F3 5 6 2 4 3
F4 6 2 2 3 3
F5 4 7 2 4 2
F6 3 2 2 4 2
F7 4 1 2 2 1
F8 3 5 2 / /
AM 4 4 2 3 2

___AM__
 # of issues 0.52 0.47 1.00 0.57 0.76

V. CONCLUSION

1. Our experiment with the new SMV benchmark shows that,
in comparison with the VLIW type, there are certain
advantages of the traditional DSP processor architecture.
Although we did not consider the power consumption, which
has much less code size and the speed performance is also
comparable with VLIW DSP architecture. We suggest that
VLIW DSP processors should have more balanced ratio of
various kinds of function units and keep some powerful
instructions under the support of hardware.
2. SMV benchmark has some kernel functions which are quite
different from traditional DSP kernels; however their major
innermost loops are relatively short. It implies either too many
function units are unnecessary or more sophisticated loop
optimization approaches are needed. For example the optimal
loop unrolling combining with software pipelining.
3.More sophisticated software pipelining methods for
complicated loops such as FFT and with nested conditional
branches are needed.

ACKNOWLEDGEMENT

This research was supported in part by the ART (Assigned
Release Time for Research) program, Office of the Provost,
William Paterson University. E-W. Hu, C. S. Ku, and B. Su
would like to thank the ART awards of William Paterson
University. This research was also supported in part by grants
from the Center for Research, College of Science and Health,
William Paterson University.

International Journal of Information and Communication Engineering 5:3 2009

229

REFERENCES

[1] W. Strauss, Forward Concepts’ Press 55, www.fwdconcepts.com, April
2007

[2] D. Katz and R. Gentile, How to Choose an Embedded Media Processor,
DSP Design Line April, 10, 2007

[3] N. Dutt and K. Choi, Configurable Processors for Embedded Computing,
IEEE Computer, Jan. 2003

[4] E. Tan and W. Heinzelman, DSP architectures: past, present and futures,
ACM SIGARCH Computer Architecture News Vol. 31, Issue 3, 2003

[5] C. Kozyrakis and D. Patterson, Vector vs. Superscalar and VLIW
Architectures for Embedded Multimedia Benchmarks, Proc. of MICRO-
35, 2002

[6] The BDTImark2000™: A Summary Measure of DSP Speed,
www.bdti.com, Sept. 2004

[7] EEMBC Brings Embedded Benchmarking out of the Pits, 2000,
www.eembc.org

[8] C. Lee et al., MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems, Proc. Of MICRO-30, 1997

[9] M. Guthaus, etc., MiBench: A free, commercially representative
embedded benchmark suite, IEEE 4th Annual Workshop on Workload
Characterization, Austin, TX, December 2001

[10] E. Hu et al, New DSP Benchmark based on Selectable Mode Vocoder
(SMV), Proc. of the 2006 International Conference on Computer
Design, June 2006

[11] CDMA Enhancements Build on a Strong Foundation, www.cdg.org,
2003

[12] M. Genutis, E. Kazanavièius, and O.Olsen, Benchmarking in DSP, ISSN
1392-2114 ULTRAGARSAS, Nr.2(39). 2001.

[13] Code Optimization for TI C62xx / C64xx, CHRONIX tutorial,
www.chronix.co.jp/chronix/syouhin/visioncomponents/pdf/Code_Optim
ization.pdf, 2005

[14] M. Chalamalasetti, Selectable Mode Vocoder (SMV), www.bsnl.in, Feb.
2003

[15] W. Strauss, Forward Concepts’ DSP Market Bulletin,
www.fwdconcepts.com, Jan. 2008

[16] D. Talla et al, Evaluating Signal Processing and Multimedia
Applications on SIMD, VLIW, and Superscalar Architectures., Proc. Of
ICCD’00, 2000

[17] J. Fisher etc., Moving from Embedded Systems to Embedded
Computing, Keynote addressing, CASES03, 2003

[18] www.3gpp2.org,
[19] L. Codrescu and E. Plondke, A Characterization of Branch Behavior in

DSP Application, Proc. Of the International Signal Processing
Conference (ISPC03), 2003

[20] E. Fernandes and V. Barbosa, Monitoring the Structure and Behavior of
Programs, Proc. of MPCS’02, April, 2002

[21] M. Smith, Overcoming the Challenges to Feedback-Directed
Optimization, Proc. of the ACM SIGPLAN Workshop on Dynamic and
Adaptive Compilation and Optimization (Dynamo’00), 2000.

[22] S. Jinturkar etc., Profile Directed Compilation in DSP Applications, Proc.
of the International Conference on Signal Processing Applications and
Technology (ICSPAT'98, 1998)

[23] D. Wall, Limits of Instruction-Level Parallelism, Proc. of ASPLOS-IV,
1991.

[24] S. Graham etc., gprof: A Call Graph Executin Profiler. Proc. of
SIGPLAN notices, Vol. 17, No.6, 1982.

[25] B. Su et al., Analysis of Loop Behavior of Selectable Mode Vocoder
(SMV) and Its Impact of Instruction Level Parallelism, Proc. of GSPx
2005.

[26] T. McCabe, A Complexity Meqsure, IEEE Tran. On Software
Engineering, 2(4):308-320, 1976

[27] Software Engineering Institute, Cyclomatic Complexity, Software
Technology Roadmap, Carnegie Mellon University,
http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.htm, 2005

[28] S. Ahmadi, Tutorial on the Variable-Rate Multimode Wideband Speech
Codec, CommsDesign, Sept. 2, 2003

[29] B. Su et al, Software De-Pipelining Technique, Proc. Fourth IEEE
International Workshop on Source Code Analysis and Manipulation
(SCAM2004), 2004

[30] B. Su et al, A new Source-Level Benchmarking for DSP Processors,
Proc. of the International Conference on Signal Processing Applications
and Technology (ICSPAT'03) 2003.

[31] J. Sankaran et al, Optimized implementation of the FFT algorithm on the
TMS320C62x and the TMS320C64x DS, Proc. of the 3rd Workshop on
Optimizations for DSP andEmbedded Systems (ODES-3), March 20,
2005

International Journal of Information and Communication Engineering 5:3 2009

230

