IONIC PRODUCT OF WATER

Pure water is a very weak electrolyte and ionises according to the equation

 $H_2O \leftrightarrow H^+ + OH^-$

Applying law of mass action at equilibrium, the value of dissociation constant, K comes to

 $K = [H^+] [OH^-]/[H_2O]$

or $[H^+][OH^-] = K[H_20]$

Since dissociation takes place to a very small extent, the concentration of undissociated water molecules, $[H_20]$, may be regarded as constant. Thus, the product $\#[H_20]$ gives another constant which is designated as K_w . So,

 $[H^+][OH^-] = K_w$

The constant, K_w, is termed as ionic product of water.

The product of concentrations of H1 and OH ions in water at a particular temperature is known as ionic product of water. The value of K_w increases with the increase of temperature, i.e., the concentration of H⁺ and OH⁻ ions increases with increase in temperature.

Temperature (°C) Value of K_w

0 0.11×10^{-14}

10 0.31 x 10⁻¹⁴

25 1.00 x 10⁻¹⁴

100 7.50 x 10⁻¹⁴

The value of K_w at 25°C is 1 x 10⁻¹⁴. Since pure water is neutral in nature, H⁺ ion concentration must be equal to OH⁻ ion concentration.

 $[H^+] = [OH^-] = x$

or $[H^+][OH^-]=x^2=1 \times 10^{-14}$

or $x = 1 \times 10^{-7} M$

or $[H^+] = [OH^-] = 1 \times 10^{-7} \text{ mol litre}^{-1}$

This shows that at 25°C, in 1 litre only 10^{-7} mole of water is in ionic form out of a total of approximately 55.5 moles.

When an acid or a base is added to water, the ionic concentration product, $[H^+][OH^-]$, remains constant, i.e., equal to K_w but concentrations of H^+ and OH^- ions do not remain equal. The addition of acid increases the hydrogen ion concentration while that of hydroxyl ion concentration decreases, i.e.,

 $[H^+] > [OH^-];$ (Acidic solution)

Similarly, when a base is added, the OH^{-} ion concentration increases while H^{+} ion concentration decreases,

i.e., $[OH^-] > [H^+]$; (Alkaline or basic solution)

In neutral solution, $[H^+] = [OH^-] = 1 \times 10^{-7} M$

In acidic solution, $[H^+] > [OH^-]$

or $[H^+] > 1 \times 10^{-7} M$

and $[OH^-] < 1 \times 10^{-7} M$

In alkaline solution, $[OH^-] > [H^+]$ or $[OH^-] > 1 \times 10^{-7} M$

and $[H^+] < 1 \times 10^{-7} M$

Thus, if the hydrogen ion concentration is more than 1×10^{-7} M, the solution will be acidic in nature and if less than 1×10^{-7} M, the solution will be alkaline.

[H ⁺]	$= 10^{-0}$	10 ⁻¹ 10 ⁻² 10 ⁻³ 10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁶	⁶ (Acidic)
[H ⁺]	=	10 ⁻⁷	(Neutral)
[H ⁺]	$= 10^{-14}$	10 ⁻¹³ 10 ⁻¹² 10 ⁻¹¹ 10 ⁻¹⁰ 10 ⁻⁹	LO ⁻⁸ (Alkaline)

We shall have the following table if OH⁻ ion concentration is taken into account.

 $[OH^{-}] = 10^{-14} \ 10^{-13} \ 10^{-12} \ 10^{-11} \ 10^{-10} \ 10^{-9} \ 10^{-8}$ (Acidic)

 $[OH^{-}] = 10^{-7}$ (Neutral)

 $[OH^{-}] = 10^{-0} 10^{-1} 10^{-2} 10^{-3} 10^{-4} 10^{-5} 10^{-6}$ (Alkaline)

It is, thus, concluded that every aqueous solution, whether acidic, neutral or alkaline contains both H⁺ and OH⁻ ions. The product of their concentrations is always constant, equal to 1×10^{-14} at 25°C. If one increases, the other decrease accordingly so that the product remains 1×10^{-14} at 25°C.

If $[H^+] = 10^{-2} \text{ M}$, then $[OH^-] = 10^{-12} \text{ M}$; the product, $[H^+][OH^-] = 10^{-2} \times 10^{-12} = 10^{-14}$; the solution is acidic.

If $[H^+] = 10^{-10} \text{ M}$, then $[OH^-] = 10^{-4} \text{ M}$; the product, $[H^+][OH^-] = 10^{-10} \times 10^{-4} = 10^{-14}$; the solution is alkaline.

Source : http://ciseche10.files.wordpress.com/2013/12/ionic-equilibrium.pdf