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1. Mean-Field Theory 

Continuum models like the Poisson-Nernst-Planck equations are “mean-field approximations” which 
describe how discrete ions are affected by the mean concentrations ci and potential φ . Each ion 
migrates in the mean electric field, which is produced by the mean charge density, not by the discrete, 
fluctuating charges in the molecular system. The self-consistent system of PNP equations we have 
derived thus far is 

⎧µi = kBT ln(γ ic i ) + zieφ⎪ 
⎪Fi = −Mici∇µi
⎪
⎨∂ci 
⎪ ∂t 

+ ∇⋅ Fi = 0 

⎪ 
⎪−∇⋅ (ε∇φ) = ρ = ∑zieci⎩ i 

However, discrete ion-ion interactions are a significant component of the excess chemical 
potential for a charged species in a bulk electrolytic solution. To accurately model such systems, 
it is important to account for these discrete interactions. 

2. Bjerrum length 

What is the length scale below which electrostatic correlations are important? In very dense 
charged systems, it is the ion size, as in solvent free ionic liquids (see below). In typical 
electrolytes, however, the relevant scale is the Bjerrum length, where the bare Coulomb energy 
between two elementary charges is balanced by the thermal fluctuation energy: 

e2 e2 

4πεlB 

= kBT ⇒ lB = 
4πεkBT 

At larger length scales, we may expect that thermal fluctuations are strong enough to justify 
replacing discrete ion-ion Coulomb forces with a continuum mean-field theory. In water at room 
temperature, the Bjerrum length is 0.7nm, which is only a few molecular lengths, so it makes 
sense to try to use mean-field theories based on the continuum PNP equations (such as Gouy
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Chapman) to describe the diffuse part of the double layer, at least at low salt concentrations, 
when the Debye length greatly exceeds the Bjerrum length. Note that these two length scales are 
related as follows: 

λD = 
1 

4πlB zi 
2c0 

i 
∑ 

= 
1 

8πlB I 

where I = 
1 ∑ zi 

2c0  is the molar ionic strength, which arises in Debye-Huckel theory, based on 
2 i 

linearization of the PNP mean-field theory above for small voltages. (See also below.) The 
condition λD  lB , which is needed to justify a mean-field theory of the diffuse part of the 
double layer, thus corresponds to 

I  
6
1 
⋅ 
4π
3 

lB 
3 

which says that the mean volume per ion must be at least six times larger than a sphere whose 
radius is the Bjerrum length. Put another way, the “correlation volume” within one Bjerrum 
length of an ion should contain fewer than ~6 neighboring ions for the Debye-Huckel mean-field 
theory to hold. 

3. Correlation Functions 

How can we go beyond mean field theory, if we know the interactions between discrete particles 
(e.g. Coulomb)? We simply need a statistical description of the liquid that gives us the 
probabilities of finding different local ionic configurations, whose energies we could in principle 
calculate. From experiments (e.g. neutron scattering) or simulations (e.g. molecular dynamics, 
Monte Carlo, etc.), it is possible to measure statistical correlations between discrete particles, 
related to their interactions. For a given system of ions of species i and species j, the number of 
pairs of said ion, separated by a distance r to r+dr is given by 

nij (r) = 4πr2gij (r)c ic j 

where gij (r) is the pair correlation function (g is unity in a uniform ideal gas). In an electrolyte, 
we have gij(r) for different types of ion pairs. g+-(r) is the counter-ion pair correlation function, 
and g--(r) is the co-ion pair correlation. 
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FIG. 1 Typical g(r) for a liquid. The first neighbor distance is r1, the second is r2, etc.

FIG. 3 Total correlation functions for a monovalent binary electrolyte with diameter of the ion = 5Å. g++(r) is the pair 
correlation function for a central atom and a neighboring co-ion and shows repulsion. g+-(r) is the counter-ion pair
correlation function and shows attraction. The solid lines result from asymptotic analysis of the double layer and the
dashed lines result from setting the mean force potential equal to the sum of the core and electrostatic asymptotes.
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4. Electrostatic Correlations in a Dilute Electrolyte (Debye-Hückel Theory) 

The bare coulomb interaction in a dielectric solvent for point charges is given by 

(zie )(z je) 
Kij =

4πεr

To calculate ion profiles in the “screening cloud,” the region of excess diffuse charge or diffuse 
countercharge, of a spherical central ion of species I, we use the Debye-Hückel approximation 

−z

c j (r)= gij (
 eψ 

r)c
j

j = c je 
⎛

kBT z e ⎞
≈ c j ⎜1 − j ψ ⎟ 

⎝ kBT ⎠

where ψ is the perturbation of electrostatic potential in the screening cloud of the central ion and 
is ψ = φ −φ . The fluctuations have energy on the order of ~kBT which is of a small enough 
magnitude that the linearization in the above equation is valid. The linear response of a screened 
central ion is given by the Debye-Hückel equation for a general dilute electrolyte 

λD∇
2ψ = ψ 

Over the length scales considered, the potential varies only with distance from the central ion. 
The potential is thus a function of r only and the above equation simplifies to 

λD d ⎛ 2 dψ⎞
r2 ⎜r ⎟ = ψ 

dr ⎝ dr ⎠

Because the fluctuations in the potential decrease with increasing distance from the central ion 
( φ →φ as r →∞ ), ψ(∞) = 0 . Applying this boundary condition, the solution to the above 
equation is a modified spherical Bessel function 

ψ(r) e−r λ
 = A

D 

r λD 
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For pair interactions, the excess chemical potential of species i is 

ex 1 ∞ 

µi = kBT lnγ i = 
2 
∑ 
j 
∫ 
0 

Kij (r)4πr
2gij (r)c jdr + many-body terms 

where Kij (r) = pair interaction energy. The factor of 12  prevents double-counting when 
evaluating all of the pairwise interactions. 
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The constant A can be evaluated using Gauss’s law for a point charge. The electric field 
generated about a point charge is indistinguishable from that at the surface of a spherically 
symmetric charge distribution of the same total charge. 

dψ zie−ε = 
dr 2  

r= a 4πa
zie dψ

− = = e−a λD A
⎛ 1 λ ⎞ 
⎜− − D

4
 

a 2  ⎟πa2ε dr r = a ⎝ a ⎠
ea λ

A
D z

 = ie 
4πε(a + λD ) 

Incorporating these boundary conditions gives the screened Coulomb potential 

e
a 

ψ(r)
λ D z

 = ie 
4πεr(1+ a

λD 
) 

The pair correlation function then becomes 

(z
( a−r ) 

g (r) 1
λ D

= − ie)(z je)e 
ij    

4πεkBTr(1+ a 
λD 
) 

Using this definition for the pair correlation function and ignoring many-body terms, the excess 
chemical potential for species i is 

1 (z e)(z e) ⎛ (z e)(z e)e
( a−r ) 

 
i  ex  ∞

j  i   ⎜1 − j 
λ D ⎞ 

µ ⎟ 2 
i = 4πr c dr

2 
∑ ∫ 
j a 4πεr ⎜ 

⎝ 4πεkBTr(1
 

+ a ) j
λD 

⎟
⎠ 

⎡
 ⎛
∑
(z ⎞
 ⎤
 je)
2 c j ( a −r ) 

λ D∞ ⎢ (z ⎛
 ⎞

⎢ i ) ( )∑ z e 2 ⎜ ⎟ e ⎥

= ∫ e  
⎜⎜ 
z ec ⎟ j

j − i  
j  ⎟ ⎜ ⎟ ⎥dr

⎢  
8πεr ⎝ ⎠ 8πε
 (1+ ⎜ ⎟ ⎥

⎝
 ⎠


The first term in the above summation is the product of the bare Coulomb potential and the bulk 
charge density. Under bulk neutrality conditions, this term is zero but would otherwise diverge. 
The excess chemical potential simplifies to 

a j εk a 
 BT λD 

)
⎣
 ⎦


2 ⎛ ⎞ 
µ ex (z e) 1 
i = k i

BT ln(γ i ) = − 
8 ⎜ ⎟πε ⎝a + λD ⎠

where λD  is the Debye screening length. The screening length can also be written in terms of the 
molar ionic strength I 
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εk εkBTλD = BT 
= ∑(z je)

2 c j 2Ι
j 

Note that the excess chemical potential given by Debye-Hückel theory is negative. The 
electrostatic interaction between an ion and its oppositely charged screening cloud is attractive, 
thereby lowering the total electrostatic energy of the system. The excess chemical potential of 
species i can be written in terms of its activity coefficient. Using the above expression for the 
screening length, the Debye-Hückel activity coefficient for dilute electrolytes can be written as 

−z 2i αln( Ι
γ i ) = 

1+ Ba Ι 

5. Ionic Liquids 

Ionic liquids exist both as molten salt (e.g. NaCl at 2000°C) and as room temperature ionic 
liquids (e.g. large organic or fatty ions). RTILs can withstand up to ±6 V, making them good 
candidates for supercapacitor designer solvents. In ionic liquids, there is no solvent, only highly 
crowded ions, so the Gouy-Chapman-Stern model for dilute electrolytes is not valid. In fact, the 
Debye-Huckel screening length is smaller than the size of a single ion, and the relevant length 
scale for electrostatic correlations and double-layer screening is the ion size. For highly 
concentrated electrolytic solutions, the short-range Coulomb correlations are very strong, and 
generally lead to “overscreening,” whereby an excess of counter-ions are attracted to a central 
charge, leading to an excess co-ions in the next layer. The end result is oscillations in the charge 
density until electroneutrality is reached. 
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FIG. 2 TOP: Structure of the ionic-liquid double layer (in color) predicted by the modified Poisson equation (*), in
agreement with molecular dynamics simulations. (a) At a moderate voltage, V 1⁄4 10kBT=e (0.26 V), the surface
charge is overscreened by a monolayer of counterions, which is corrected by an excess of coions in the second
monolayer. (b) At a high voltage, V 1⁄4 100kBT=e (2.6 V), the crowding of counterions extends across two monolayers
and dominates overscreening, which now leads to a coion excess in the third monolayer. Because of electrostriction,
the diffuse double layer (colored ions) is more dense than the quasineutral bulk liquid (white ions). BOTTOM: Ion
profiles obtained by solving (*) at high voltage, showing the structures of the top figure. 

To describe these correlation phenomena, a 4th order modified Poisson-Boltzmann equation has 
recently been proposed [1]: 

−ε(1 − l 2c ∇
2 )∇2ψ = ρeq (ψ) (*) 

where lc is an electrostatic correlation length. The fourth derivative term gives rise to the 
oscillations. This theory is consistent with experiments and simulations with ρeq (ψ)  using a 
lattice gas to account for the excluded volume and is convenient for mathematical modeling. 
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