BOND FISSION - II

Carbocations

Carbocations are formed from the heterolytic cleavage of a carbon-heteroatom (meaning a non carbon atom in general) bond where the other atom is more electronegative than carbon like a C-O, C-N, C-X (X can be Cl, Br, I, etc) bond. This is quite logical as after the cleavage if a carbocation is to be formed the two electrons of the bond must go to the other atom. And this is favoured if that other atom is electronegative. Carbocations can be made in difficult conditions by using so-called superacids, developed by George Olah (Nobel Prize, 1994), which helps stabilize these intermediates substantially to be analyzed. Formation of carbocations can be assisted by using cations like Ag⁺, with alkyl halides as substrates.

\[
\text{(CH}_3\text{)}_2\text{CHF} \quad + \quad \text{Ag}^+ \quad (\text{AgNO}_3 \text{ is used}) \quad \rightarrow \quad \text{(CH}_3\text{)}_2\text{CH}^+ \quad + \quad \text{AgF} \downarrow
\]

Figure 6. Formation of carbocation

The precipitating out of the silver salt forces the equilibrium to shift towards the forwards reaction. The positively charged carbon atom in carbocations is sp² hybridized, which means it’s planar as we know by now. The three substituents of the carbocation lie in a plane leaving the unhybridized empty p orbital perpendicular to them.

Figure 7. Carbocation

These intermediates react with species which are electron rich (quite obvious) and being charged are stabilized in polar solvents. (Just as Na⁺ is soluble and stable in polar water). Carbocations are important intermediates in most mechanisms along with carbanions as we shall see later.

To summarize carbocations:

- Formed due to heterolysis of a C-X bond (where X is more electronegative) and thus has a positive charge.
- Planar in shape (sp² hybridized carbon), with empty p orbital perpendicular to the plane of the molecule.
- Reactive towards electron rich species.

Carbanions
These are intermediates also formed as a result of heterolysis, but here the electron pair from the bond is kept by the carbon atom. From what we saw earlier the more electronegative atom keeps the electrons, so in this case carbon must be the more electronegative of the two atoms making up the bond. Now there are only a few atoms (non-metals; metals are not usually part of organic chemistry) which are less electronegative, so the most common bond cleavage which yields carbanions is the C-H bond. The ease of breaking this bond and creating a carbanion is also a measure of the compound’s acidity, because a H⁺ is also generated with the carbanion, which makes the molecule an acid in the Bronsted sense.

![Pyramidal](image)

Figure 8. Carboanion

Carbanions have three groups attached to each other and a lone pair of electrons which gives it its negative charge (similar to the ammonia molecule where the central N has 3 Hs and a lone pair of electrons). So its geometry is pyramidal (tetrahedral but since there is no fourth group again it's like a tetrahedral with head cut off) and the carbon atom is sp³ hybridized.

Carbanions are also stable in polar solution (electrostatic stabilization).

To summarize carbanions:

- Formed due to heterolysis of a C-X bond (where X is less electronegative) and thus has a negative charge.
- Pyramidal shape (sp³ hybridized) with the excess electrons placed in one sp³ hybrid orbital.
- Reactive towards positively charged (electron deficient species).

Stability of intermediates

Most organic reactions take place via formation of intermediates. So the study of different intermediates would help us predict the course of the reaction and the main aspect to look at would be their stability. No organic mechanism has been conclusively ‘PROVEN’, all the mechanism we see are the most plausible ones derived from many experiments, a major component of which is isolating and studying the intermediates. It is difficult to say that a certain mechanism is absolutely correct, but it is quite simple to point out an incorrect mechanism. One of the ways a chemist would confirm an incorrect mechanism is if it involves a very unstable intermediate. The good thing about this is that with a few empirical rules and principles in mind, it is quite simple to assign relative stability of intermediates like
radicals, carbocations and carbanions. And what is even better is that we have already discussed these principles.

For carbocations and free radicals (both electron poor species), any group which donates electron density to the carbon centre would stabilize it and inversely electron withdrawing groups would increase electron deficiency on the carbon centre leading to destabilization. (Remember charge is not desirable, the most stable species are usually neutral). So following the same logic the effect should just be opposite in the case of carbanions as they are electron rich (negatively charged) instead of being electron deficient like the above two. So groups which pull away electrons from the charged carbon atom would have a stabilizing effect whereas electron donation would destabilize the intermediate as it loads more negative charge on an already negatively charged atom.

Source: http://padakshep.org/otp/subjects/chemistry/organic-chemistry/bond-fission/