Presents

Practical
Machinery Vibration Analysis
and Predictive Maintenance

Web Site: www.idc-online.com
E-mail: idc@idc-online.com
Preface

This practical book provides a detailed examination of the detection, location and diagnosis of faults in rotating and reciprocating machinery using vibration analysis. The basics and underlying physics of vibration signals are first examined. The acquisition and processing of signals are then reviewed followed by a discussion of machinery fault diagnosis using vibration analysis. Hereafter the important issue of rectifying faults that have been identified using vibration analysis is covered. The book concludes with a review of the other techniques of predictive maintenance such as oil and particle analysis, ultrasound and infrared thermography. The latest approaches and equipment used together with current research techniques in vibration analysis are also highlighted in the text.

We hope that you will gain the following from this book:

• An understanding of the basics of vibration measurement
• The basics of signal analysis
• Understanding the measurement procedures and the characteristics of vibration signals
• Ability to use Data Acquisition equipment for vibration signals
• How to apply vibration analysis for different machinery faults
• How to apply specific techniques for pumps, compressors, engines, turbines and motors
• How to apply vibration based fault detection and diagnostic techniques
• The ability to diagnose simple machinery related problems with vibration analysis techniques
• How to apply advanced signal processing techniques and tools to vibration analysis
• How to detect, locate and diagnose faults in rotating and reciprocating machinery using vibration analysis techniques
• Ability to identify conditions of resonance and be able to rectify these problems
• How to apply basic allied predictive techniques such as oil analysis, thermography, ultrasonics and performance evaluation

People who will find this book useful include:

• Instrumentation & Control Engineers
• Maintenance Engineers
• Mechanical Engineers & Technicians
• Control Technicians
• Electrical Engineers
• Electricians
• Maintenance Engineers & Technicians
• Process Engineers
• Consulting Engineers
• Automation Engineers
Table of Contents

01: Predictive Maintenance Techniques: Part 1

Predictive Maintenance Basics ... 1

1.1 **Maintenance Philosophies** .. 3

 Breakdown or Run to Failure Maintenance .. 3

 Preventive or Time Based Maintenance .. 4

 Predictive or Condition Based Maintenance .. 4

 Pro-Active or Prevention Maintenance ... 5

1.2 **Evolution of Maintenance Philosophies** .. 6

1.3 **Plant Machinery Classification and Recommended Maintenance Strategy** ... 9

1.4 **Principles of Predictive Maintenance** .. 11

1.5 **Predictive Maintenance Techniques** .. 12

1.6 **Vibration Analysis - A key Predictive Maintenance Technique** 13

 Vibration Analysis (Detection Mode) ... 13

 Vibration Analysis (Diagnosis Mode) ... 14

 Vibration analysis - Benefits ... 14

02: Predictive Maintenance Techniques: Part 2

Vibration Basics ... 17

2.1 **Spring-Mass System: Mass, Stiffness, Damping** 19

2.2 **System Response** ... 21

2.3 **What is Vibration?** .. 22

2.4 **The Nature of Vibration** .. 23

 Wave Fundamentals .. 25

 Frequency (Cycle) ... 26

 Wavelength .. 26

 Amplitude ... 27

 Frequency and Time ... 27

 Phase .. 27

 Waveforms .. 28
2.5 Harmonics.. 29
 Fourier Analysis .. 29
 Overall Amplitude .. 30
 Vibration Terminology .. 31
 Using Vibration Theory to Machinery Fault Detection .. 34

2.6 Limits and Standards of Vibration ... 36
 ISO 2372 .. 36
 IRD Mechanalysis Vibration Standards .. 39

03: Data Acquisition ... 43

3.1 Introduction ... 45

3.2 Collection of Vibration Signal - Vibration Transducers, Characteristics and Mountings ... 45
 Velocity Pickup ... 45
 Theory of Operation .. 46
 Number of Sensors ... 47
 Displacement probes - Eddy Current Transducers - Proximity Probes 51

3.3 Conversion of Vibrations to Electrical Signal ... 58
 Handheld Vibration Meters and Analysers .. 58
 Portable Data Collectors / Analysers .. 61
 Vibration Analysis - Database Management Software ... 62
 On-line Data Acquisition and Analysis ... 64
 Knowledge-based Information Systems ... 67
 Phase Measurement Systems ... 67
 Torsional Vibrations .. 72

3.4 Conclusion ... 76

04: Signal Processing, Application & Representation.. 77

4.1 The Fast Fourier Transform (FFT) Analysis .. 79
 Fourier Transform ... 79
 Sampling Rate .. 80
 Analogue to Digital Converters .. 81
 Windowing .. 82
 Lines of Resolution, F-Max, Bandwidth .. 84
 Averaging ... 85
4.2 Time Waveform Analysis ... 90
 Unit of Measurement .. 93
 Time Period of Sample .. 93
 Resolution ... 94
 Averaging ... 94
 Windows ... 94

4.3 Phase Signal Analysis... 95

4.4 Special Signal Processes... 97
 Synchronous Time Averaging .. 97
 Orbits ... 100
 Bode Plot .. 102
 Polar / Nyquist Plot .. 103
 Cascade Plot .. 104
 Full Spectrum ... 105
 Operational Deflection Shapes Analysis ... 106
 Enveloping and Demodulation .. 113
 Cepstrum Analysis .. 118
 Third Octave Analysis .. 119

4.5 Conclusion ... 120

05: Machinery Fault Diagnosis using Vibration Analysis 121

5.1 Introduction ... 123

5.2 Commonly witnessed Machinery Faults diagnosed by Vibration Analysis 123
 Unbalance .. 124
 Eccentric Rotor ... 127
 Bent Shaft ... 128
 Misalignment .. 128
 Mechanical Looseness .. 135
 Resonance ... 137
 Rotor Rubs .. 145
 Journal Bearings ... 147
 Rolling Element Bearings ... 151
 Gearing Defects .. 155
 Belt Defects ... 162
06: Correcting Faults that cause Vibration

6.1 Introduction

- Correcting Faults that cause Vibration
- Introduction

6.2 Balancing

- Balancing Concepts
- The Effect of a Trial Weight
- Balancing Methods
- Influence Coefficients
- Principle of One-step Balancing Using Dual Channel Analysers
- Use of Balancing Machines versus Field balancing
- Balancing machines
- Balancing Limits

6.3 Alignment

- Consequences of Misalignment
- Factors that Influence Alignment Procedure
- Alignment Techniques
- Alignment Tolerances

6.4 Resonance Vibration Control with Dynamic Absorbers

- Designing a Dynamic Absorber
- Applications of a Dynamic Absorber

07: Oil & Particle Analysis

7.1 Introduction

7.2 Oil Fundamentals

7.3 Condition-based Maintenance and Oil Analysis

7.4 Setting Up an Oil Analysis Program

- Equipment Audit
- Lubricant Audit
- Monitoring

7.5 Oil Analysis - Sampling Methods

- Sampling Port Location
7.6 Oil Analysis - Lubricant Properties ... 248

- Appearance, Colour, Odour ... 248
- Acidity Inorganic ... 248
- Acidity Organic ... 248
- Acidity Total ... 248
- Specific Gravity ... 249
- Kinematic Viscosity ... 249
- Viscosity Index ... 250
- Flash Point ... 250
- Pour Point ... 250
- Copper Strip Corrosion Test ... 250
- Foaming ... 250
- Saponification Number ... 251
- Rust Prevention Characteristics ... 251
- Demulsification Number ... 251
- Oxidation Tests ... 251
- Pump Wear Test ... 252
- Emulsion and Demulsibility Characteristics ... 252
- Air Release Valve ... 252
- Seal Compatibility ... 252
- FZG Test (FZG-Niemon EP Test) ... 252
- pH Value ... 252
- Water Content ... 253
- Fire Resistant Hydraulic Characteristics ... 253
- Ash Sulphated ... 254
- Electrical Strength ... 254
- Specific Resistance ... 254
- Dielectric Dissipation Factor ... 254
- Interfacial Tension ... 254
- Extreme Pressure Properties ... 254
- Insolubles (Pentane and Hexane) ... 255
- Total Base Number (TBN) ... 255
- TAN - TBN Ratio ... 255

7.7 Oil Analysis - Contaminants in Lubricants ... 257

- Contamination from Outside Sources ... 257
Different External Contaminants ... 258

7.8 Particle Analysis Techniques ... 264
Spectrometric Analysis .. 264
Infrared Analysis .. 267
Wear Particle Analysis / Ferrography ... 270
DR Ferrography .. 279
XRF (X-Ray Fluorescence) Spectroscopy ... 280

7.9 Alarm Limits for Various Machines ... 282
Compressors .. 282
Turbines .. 282
Hydraulic Systems .. 283
Gas Fired Engines .. 283

7.10 Conclusion ... 284

08: Other Predictive Maintenance Techniques ... 285

8.1 Introduction .. 287

8.2 Ultrasound .. 288
Ultrasonic Translator .. 288
Ultrasound Detection Techniques ... 290
Isolating Competing Ultrasounds ... 291
Ultrasonic Applications .. 293

8.3 Infrared Thermography ... 297
Applications of IR Thermography ... 298

8.4 Conclusion ... 302

Appendix A: Exercises .. 303
Appendix B: Answers .. 317
Appendix C: Practical Sessions .. 321
Predictive Maintenance Techniques: Part 1
Predictive Maintenance Basics
1.0 Predictive Maintenance Basics

1. Maintenance Philosophies

If we were to do a survey of the maintenance philosophies employed by different process plants, we would notice quite a bit of similarity despite the vast variations in the nature of their operations. These maintenance philosophies can usually be divided into four different categories:

- Breakdown or Run to Failure Maintenance
- Preventive or Time Based Maintenance
- Predictive or Condition Based Maintenance
- Pro-Active or Prevention Maintenance

These categories are briefly described in the figure below:

![Fig. 1.1 Maintenance Philosophies](image)

Fig. 1.1

Maintenance Philosophies

- **a. Breakdown or Run to Failure Maintenance**

 The basic philosophy behind Breakdown Maintenance is to allow the machinery to run to failure and only repair or replace damaged components just before or when the equipment comes to a complete stop. This approach works well if equipment shutdowns do not affect production and if labour and material costs do not matter.
The disadvantage is that the maintenance department perpetually operates in an unplanned 'crisis management' mode. When unexpected production interruptions occur, the maintenance activities require a large inventory of spare parts to react immediately. Without a doubt, it is the most inefficient way to maintain a production facility. Futile attempts are made to reduce costs by purchasing cheaper spare parts and hiring casual labour that further aggravates the problem.

The personnel generally have low morale in such cases as they tend to be overworked, arriving at work each day to be confronted with a long list of unfinished work, and a set of new emergency jobs that occurred overnight.

Despite the many technical advances in the modern era, it is still not uncommon to find production plants that operate with this maintenance philosophy.

b. Preventive or Time Based Maintenance

This philosophy behind Preventive Maintenance is to schedule maintenance activities at predetermined time intervals, based on calendar days or runtime hours of machines. Here the repair or replacement of damaged equipment is carried out before obvious problems occur. This is a good approach for equipment that does not run continuously, and where the personnel have enough skill, knowledge, and time to perform the preventive maintenance work.

The main disadvantage is that scheduled maintenance can result in performing maintenance tasks too early or too late. Equipment would be taken out for overhaul at a certain number of running hours. It is possible that, without any evidence of functional failure, components are replaced when there is still some residual life left in them. It is therefore quite possible that reduced production could occur due to unnecessary maintenance. In many cases there is also a possibility of diminished performance due to incorrect repair methods. In some cases, perfectly good machines are disassembled, their good parts removed and discarded, and new parts are improperly installed with troublesome results.

c. Predictive or Condition Based Maintenance

This philosophy consists of scheduling maintenance activities only when a functional failure is detected.

Mechanical and operational conditions are periodically monitored, and when unhealthy trends are detected, the troublesome parts in the machine are identified and scheduled for maintenance. The machine would then be shut down at a time when it is most convenient, and the damaged components would be replaced. If left unattended, these failures could result in costly secondary failures.

One of the advantages of this approach is that the maintenance events can be scheduled in an orderly fashion. It allows for some lead-time to purchase
parts for the necessary repair work and thus reducing the need for a large inventory of spares. Since maintenance work is only performed when needed, there is also a possible increase in production capacity.

A possible disadvantage is that maintenance work may actually increase due to an incorrect assessment of the deterioration of machines. To track the unhealthy trends in vibration, temperature, or lubrication, requires the facility to acquire specialised equipment to monitor these parameters and provide training to personnel (or hire skilled personnel). The alternative is to outsource this task to a knowledgeable contractor to perform the machine monitoring duties.

If an organization had been running with a breakdown or preventive maintenance philosophy, the production team and maintenance management must both conform to this new philosophy.

It is very important that the management supports the maintenance department by providing the necessary equipment along with adequate training for the personnel. The personnel should be given enough time to collect the necessary data, and be permitted to shut down the machinery when problems are identified.

d. **Pro-Active or Prevention Maintenance**

This philosophy lays primary emphasis on tracing all failures to their root cause. Each failure is analysed and proactive measures are taken to ensure that they are not repeated. It utilises all of the predictive / preventive maintenance techniques discussed above in conjunction with Root Cause Failure Analysis (RCFA). RCFA detects and pinpoints the problems that cause defects. It ensures that appropriate installation and repair techniques are adopted and implemented. It may also highlight the need for redesign or modification of equipment to avoid recurrence of such problems.

As in the predictive based program, it is possible to schedule maintenance repairs on equipment in an orderly fashion, but additional efforts are required to provide improvements to reduce or eliminate potential problems from occurring repeatedly.

Again, the orderly scheduling of maintenance allows lead-time to purchase parts for the necessary repairs. This reduces the need for a large spare parts inventory, because maintenance work is only performed when it is required. Additional efforts are made to thoroughly investigate the cause of the failure and to determine ways to improve the reliability of the machine. All of these aspects lead to a substantial increase in production capacity.

The disadvantage is that extremely knowledgeable employees in preventive, predictive, and prevention / pro-active maintenance practices are required. It is also possible that the work may require outsourcing to knowledgeable contractors who will have to work closely with the maintenance personnel in the RCFA phase. Pro-Active Maintenance also requires procurement of specialised equipment and properly trained personnel to perform all these duties.
2. Evolution of Maintenance Philosophies

Machinery maintenance in industry has evolved from Breakdown Maintenance to Time Based Preventive Maintenance. Presently, the Predictive and Pro-Active Maintenance philosophies are the most popular.

Breakdown maintenance was practiced in the early days of production technology and was reactive in nature. Equipment was allowed to run until a functional failure occurred. Secondary damage was often observed along with a primary failure.

This led to Time Based Maintenance, also called Preventive Maintenance. In this case, equipment was taken out of production for overhaul after completing a certain number of running hours, even if there was no evidence of a functional failure. The drawback of this system was that machinery components were being replaced even when there was still some functional lifetime left in them. This approach unfortunately could not assist to reduce maintenance costs.

Due to the high maintenance costs when using Preventive Maintenance, an approach to rather schedule the maintenance or overhaul of equipment based on the condition of the equipment was needed. This led to the evolution of Predictive Maintenance and its underlying techniques.

Predictive Maintenance requires continuous monitoring of equipment to detect and diagnose defects. Only when a defect is detected, the maintenance work is planned and executed.

Today, Predictive Maintenance has reached a sophisticated level in industry. Till the early eighties justification spreadsheets were used in order to obtain approvals for Condition Based Maintenance programs. Luckily, this is no longer the case.

The advantages of Predictive Maintenance are accepted in industry today, because the tangible benefits in terms of early warnings about mechanical and structural problems in machinery is clear. The method is now seen as an essential detection and diagnosis tool that has a certain impact in reducing maintenance costs, operational vs. repair downtime and inventory hold-up.

In the continuous process industry, such as oil and gas, power generation, steel, paper, cement, petrochemicals, textiles, aluminium and others, the penalties of even a small amount of downtime are immense. It is in these cases that the adoption of the Predictive Maintenance is required above all.

Through the years, Predictive Maintenance has helped improve productivity, product quality, profitability and overall effectiveness of manufacturing plants.

Predictive Maintenance in the actual sense is a philosophy - an attitude that uses the actual operating conditions of the plant equipment and systems to optimise the total plant operation.
It is generally observed that manufacturers embarking upon a Predictive Maintenance program become more aware of the specific equipment problems and subsequently try to identify the root causes of failures. This tendency lead to an evolved kind of maintenance, called Pro-Active Maintenance.

In this case, the maintenance departments take additional time to carry out precision balancing, more accurate alignments, detune resonating pipes, adhere strictly to oil check / change schedules etc. This ensures that they eliminate the causes that may give rise to defects in their equipment in the future.

This evolution in maintenance philosophy has brought about longer equipment life, higher safety levels, better product quality, lower life cycle costs and reduced emergencies and panic decisions precipitated by major and unforeseen mechanical failures.

Putting all this objectively one can enumerate the benefits in the following way:

- **Increase in machine productivity** -
 By implementing Predictive Maintenance it may be possible to virtually eliminate plant downtime due to unexpected equipment failures.

- **Extend intervals between overhauls** -
 This maintenance philosophy provides information that allows scheduling maintenance activities on an “as needed” basis.

- **Minimise the number of “open, inspect and repair if necessary” overhaul routines** -
 Predictive Maintenance pinpoints specific defects and can thus make maintenance work more focused, rather than investigating all possibilities to detect problems.

- **Improve repair time** -
 Since the specific equipment problems are known in advance, maintenance work can be scheduled. This makes the maintenance work faster and smoother. As machines are stopped before breakdowns occur, there is virtually no secondary damage, thus reducing repair time.

- **Increase machine life** -
 A well-maintained machine generally lasts longer.

- **Resources for repair can be properly planned** -
 Prediction of equipment defects reduces failure detection time, thus also failure reporting time, assigning of personnel, obtaining the correct documentation, securing the necessary spares, tooling and other items required for a repair.
• Improve product quality -
 Often, the overall effect of improved maintenance is improved product
 quality. For instance, vibration in paper machines has a direct effect on
 the quality of the paper.

• Save maintenance costs -
 Studies have shown that the implementation of a proper maintenance
 plan results in average savings of 20 - 25% in direct maintenance costs in
 conjunction with twice this value in increased production.
3. **Plant Machinery Classification and Recommendations**

a. **Maintenance Strategy**

The above maintenance philosophies have their own advantages and disadvantages and are implemented after carrying out a criticality analysis on the plant equipment. Usually the criticality analysis categorizes the equipment as:

- Critical
- Essential
- General-purpose

The *critical* equipment are broadly selected on the following basis:

- Whether their failure can affect plant safety.
- Machines that are essential for plant operation and where a shutdown will curtail the production process.
- Critical machines include unduplicated machinery trains and large horsepower trains.
- These machines have high capital cost, they are very expensive to repair (e.g., high-speed turbomachinery), or take a long time to repair.
- Perennial "bad actors" or machines that wreck on the slightest provocation of an off-duty operation.
- Finally, machinery trains where better operation could save energy or improve production.

In all probability, the Pro-Active and Predictive Maintenance philosophy is adopted for critical equipment. Vibration monitoring instruments are provided with continuous, full-time monitoring capabilities for these machines. Some systems are capable of monitoring channels simultaneously so that rapid assessment of the entire machine train is possible.

The *essential* equipment are broadly selected on the following basis:

- Failure can affect plant safety.
- Machines that are essential for plant operation and where a shutdown will curtail a unit operation or a part of the process.
- They may or may not have an installed spare available.
- Start-up is possible but may affect production process.
- High horsepower or high speed but might not be running continuously.
- Some machines that demand Time Based Maintenance, like reciprocating compressors.
- These machines require moderate expenditure, expertise and time to repair.
- Perennial "bad actors" or machines that wreck at a historically arrived time schedule. For example, centrifugal fans in corrosive service.
In many cases, the Preventive Maintenance philosophy, and at times even a less sophisticated Predictive Maintenance program is adopted for such equipment. These essential machines do not need to have the same monitoring instrumentation requirements as critical machines. Vibration monitoring systems installed on essential machines can be of the scanning type, where the system switches from one sensor to the next to display the sensor output levels one by one.

The *general-purpose* equipment are broadly selected on the following basis:

- Failure does not affect plant safety.
- Not critical to plant production.
- Machine has an installed spare or can operate on demand.
- These machines require low to moderate expenditure, expertise and time to repair.
- Secondary damage does not occur or is minimal.

Usually it is acceptable to adopt the Breakdown Maintenance philosophy on general-purpose equipment. However, in modern plants, even general-purpose machines are not left to chance.

These machines do not qualify them for permanently installed instrumentation or a continuous monitoring system. They are usually monitored with portable instruments.
4. **Principles of Predictive Maintenance**

Predictive Maintenance is basically a condition driven Preventive Maintenance. Industrial or in-plant average life statistics are not used to schedule maintenance activities in this case. Predictive Maintenance monitors mechanical condition, equipment efficiency and other parameters and attempts to derive the approximate time of a functional failure.

A comprehensive Predictive Maintenance program utilises a combination of the most cost-effective tools to obtain the actual operating conditions of the equipment and plant systems. On the basis of this collected data, the maintenance schedules are selected.

Predictive Maintenance use various techniques such as Vibration analysis, Oil and Wear debris analysis, Ultrasonics, Thermography, Performance evaluation and other techniques to assess the equipment condition.

Predictive Maintenance techniques actually have a very close analogy to medical diagnostic techniques. Whenever a human body has a problem it exhibits a symptom. The nervous system provides the information - this is the detection stage. Furthermore, if required, pathological tests are done to diagnose the problem. On this basis, suitable treatment is recommended.

![Fig. 1.2 Predictive Maintenance](image)

In a similar way, defects that occur in a machine always exhibit a symptom in the form of vibration or some other parameter. However, this may or may not be easily detected on machinery systems with human perceptions.

It is here that Predictive Maintenance techniques come to assistance. These techniques detect symptoms of the defects that have occurred in machines, and assist in diagnosing the exact defects that have occurred. In many cases, it is also possible to estimate the severity of the defects.

The specific techniques used depend on the type of plant equipment, their impact on production, or other key parameters of plant operation. Of further importance are the goals and objectives that the Predictive Maintenance program needs to achieve.