Understanding and Using Lithium Rechargeable Batteries

Simon Chan
Chief Engineer
Radlink Communications
6th April 2016

Today's agenda

- Rechargeable batteries
 - Why use rechargeable batteries?
 - Different battery chemistries
 - 'Horses for courses'
- Lithium rechargeable batteries
 - Are they safe?
 - Different types of Lithium cells
 - Chemistry
 - Size
 - Shape

Today's agenda (continued)

- Lithium rechargeable batteries (continued)
 - Selecting a suitable cell for your project
 - Connecting cells together
 - Charging and discharging
 - Battery management systems
 - Longevity
 - Disposal and recycling

Share your questions

Your presenter...

Simon Chan

- Born in Hong Kong
- Lived in Australia since '74
- Raised & educated in Perth
- I love R&D and creating new products
- Have worked 31 years in many awesome companies
- Now working for Australia's largest 2-way radio integration company
- Started using Lithium batteries for our own energy storage needs
- Now creating unique Lithium battery solutions for industry

For more info about me, see: https://www.linkedin.com/in/simonskchan

Simon Chan

Chief Engineer at Radlink Communications

Perth, Australia | Telecommunications

Current Radlink Communications, DTPL

Previous nearmap.com, Remote Control Technologies Pty Ltd,

Memo Communications

Education The University of Western Australia

Rechargeable batteries – Why?

- Why use rechargeable batteries?
 - Portable equipment
 - People want low cost, lightweight, long battery
 life thanks to smartphones & smart devices
 - Include charger on-board to simplify design
 - 10+ years ago, it was very challenging
 - Design is so much easier now!

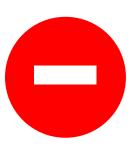
– Audience participation: Why and where do you use rechargeable batteries?

Rechargeable batteries – Lead Acid

Different battery chemistries

1900's

- Lead Acid
 - Readily available
 - Low cost
 - Tolerant to overcharge
 - Lead is toxic
 - Takes long time to charge
 - Heavy (30-50Wh/kg)
 - Easy to damage
 - Heat
 - Excessive discharge
 - Electrodes become brittle with age
 - Limited cycle life
 - Bulge / crack / leak



Rechargeable batteries - NiCd

Different battery chemistries

1950's

- Nickel Cadmium
 - Readily available
 - Low cost
 - Can be rapidly charged (1 to 2 hours to full charge)
 - High peak discharge current
 - Cadmium is toxic
 - Terrible self-discharge characteristics
 - Charge discharge memory effect
 - Difficult to charge

Rechargeable batteries - NiMH

Different battery chemistries

1990's

- Nickel Metal Hydride
 - Readily available
 - Low cost
 - Good energy to weight ratio
 - Moderate peak discharge current
 - No charge discharge memory effect
 - Low toxicity
 - Terrible self-discharge characteristics
 - Limited cycle life
 - Double charge time of NiCd

Useful Summary Slide

With thanks to Battery University

http://batteryuniversity.com/learn/article/secondary_batteries

Specifications	Lead Acid	NiCd	NiMH	Cobalt	Li-io n ¹ Manganese	Phosphate
Specific energy (Wh/kg)	30-50	45–80	60-120	150–250	100–150	90–120
Internal resistance	Very Low	Very low	Low	Moderate	Low	Very low
Cycle life ² (80% DoD)	200-300	1,0003	300-500³	500–1,000	500–1,000	1,000-2,000
Charge time ⁴	8–16h	1–2h	2–4h	2–4h	1–2h	1–2h
Overcharge tolerance	High	Moderate	Low	Low. No trickle charge		
Self-discharge/ month (room temp)	5%	20%5	30%5	<5% Protection circuit consumes 3%/month		
Cell voltage (nominal)	2V	1.2V ⁶	1.2√6	3.6√7	3.7√7	3.2-3.3V
Charge cutoff voltage (V/cell)	2.40 Float 2.25	Full charge detection by voltage signature		4.20 typical Some go to higher V		3.60
Discharge cutoff voltage (V/cell, 1C)	1.75∨	1.00∨		2.50–3.00∨		2.50∨
Peak load current Best result	5C8 0.2C	20C 1C	5C 0.5C	20 <10	>30 C <10 C	>30C <10C
Charge temperature	–20 to 50°C (–4 to 122°F)	0 to 45°C (32 to 113°F)		0 to 45°C ⁹ (32 to 113°F)		
Discharge temperature	–20 to 50°C (–4 to °F)	–20 to 65°C (–4 to 49°F)		–20 to 60°C (–4 to 140°F)		
Maintenance requirement	3–6 months ¹⁰ (toping chg.)	Full discharge every 90 days when in full use		Maintenance-free		
Safety requirements	Thermally stable	Thermally stable, fuse protection		Protection circuit mandatory ¹¹		
In use since	Late 1800s	1950	1990	1991	1996	1999
Toxicity	Very high	Very high	Low	Low		
Coulombic efficiency ¹²	~90%	~70% slow charge ~90% fast charge		99%		
Cost	Low	Moderate		High ¹³		

Rechargeable batteries

- Different battery chemistries
 - A case of 'Horses for courses'
 - For a long time, not a lot of choice
 - Lead acid for heavy duty products
 - NiMH for portable equipment
 - Has been the status quo for a long time
 - Remember the first 'Brick' mobile telephones?
- But... science and technology have been improving by leaps and bounds!

Lithium batteries - Safe?

Are Lithium batteries safe?

1990's

- Yes and no
- Early generations of Lithium ion batteries were really difficult to charge
 - Lots of heat being generated leading to fires
- High energy and power density means one small fault leads to a big mess
 - Lead acid: 30-50Wh/kg
 - Lithium Cobalt Oxide: 150-250Wh/kg

5x - 8x

— Stick to design guidelines = Safe!

Lithium chemistries – LiCoO₂

- Lithium Cobalt Oxide LiCoO₂
 - Nominal voltage: 3.6V
 - Capacity: 150-200Wh/kg
 - CC/CV charging
 - Eg 18650 cell: 3.6V 2400mAh
 - Charge up to 1C (2.4A) up to 4.2V
 - Discharge up to 1C (2.4A) no lower than 2.5V
 - 500-1000 cycles
 - Good for smartphones, tablets, laptops, cameras
 - Beware of thermal runaway at 150°C due to overcurrent
 - Toxicity issues with Cobalt

Lithium chemistries – LiMn₂O₄

- Lithium Manganese Oxide LiMn₂O₄
 - Nominal voltage: 3.7V
 - Capacity: 100-150Wh/kg
 - CC/CV charging
 - Charge up to 3C up to 4.2V
 - Discharge up to 10C no lower than 2.5V
 - 300-700 cycles
 - Inside power tools, medical devices, electric cars
 - Beware of thermal runaway at 250°C

Lithium chemistries – LiNiMnCoO₂

- Lithium Nickel Manganese Cobalt Oxide –
 LiNiMnCoO₂ (NMC)
 - Nominal voltage: 3.7V
 - Capacity: 150-250Wh/kg
 - CC/CV charging
 - Charge up to 1C up to 4.2V
 - Discharge up to 2C no lower than 2.5V
 - 1000-2000 cycles
 - Inside E-bikes, electric cars
 - Beware of thermal runaway at 210°C

Lithium chemistries – LiFePO₄

- Lithium Iron Phosphate LiFePO₄ (aka Lithium Ferro Phosphate or LFP)
 - Nominal voltage: 3.2V
 - Capacity: 90-120Wh/kg (1/3rd weight of lead acid)
 - CC/CV charging
 - Charge up to 1C up to 3.65V
 - Discharge up to 5C no lower than 2.5V
 - 1000-2000 cycles
 - Good for high load currents and endurance
 - Low risk of thermal runaway (trigger at >270°C)
 - Can tolerate over-charging without damage
 - The 'Safe Lithium battery'

With thanks to Battery University

Specific

Safety

Specific energy

Performance

Cost

Life span

http://batteryuniversity.com/learn/article/types_of_lithium_ion

Good for Australian conditions & my favourite battery chemistry!

Useful Summary Slide

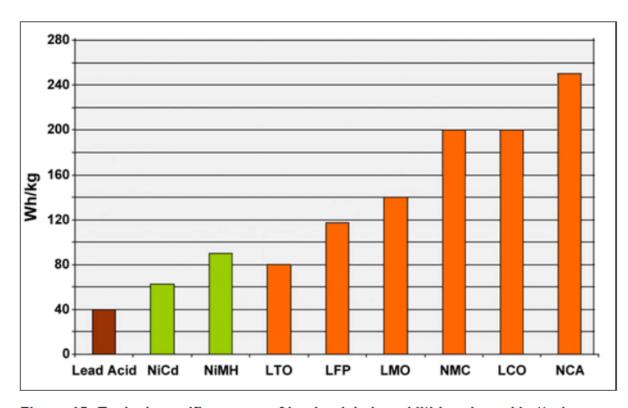


Figure 15: Typical specific energy of lead-, nickel- and lithium-based batteries.

With thanks to Battery University

http://batteryuniversity.com/learn/article/types of lithium ion

Useful Summary Slide

12V 22Ah = 260Wh

Lithium Cobalt Oxide

Weight: 1.65kg

Volume: 0.86L

Lithium Ferro Phosphate

Weight: 2.63kg

Volume: 1.48L

Lead Acid

Weight: 7.01kg

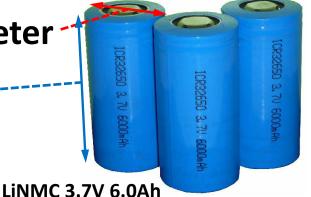
Volume: 2.32L

Useful Summary Slide

With thanks to Battery University

http://batteryuniversity.com/learn/article/secondary_batteries

Specifications	Lead Acid	NiCd	NiMH	Cobalt	Li-ion ¹ Manganese	Phosphate
Specific energy	30–50	45–80	60–120	150–250	100–150	90–120
Internal resistance	Very Low	Very low	Low	Moderate	Low	Very low
Cycle life ² (80% DoD)	200–300	1,0003	300-500³	500–1,000	500–1,000	1,000–2,000
Charge time ⁴	8–16h	1-2h	2–4h	2-4h	1–2h	1–2h
Overcharge tolerance	High	Moderate	Low	Low. No trickle charge		
Self-discharge/ month (room temp)	5%	20%5	30%5	<5% Protection circuit consumes 3%/month		
Cell voltage (nominal)	2V	1.2V ⁶	1.2√6	3.6√7	3.7√7	3.2-3.3V
Charge cutoff voltage (V/cell)	2.40 Float 2.25	Full charge detection by voltage signature		4.20 typical Some go to higher V		3.60
Discharge cutoff voltage (V/cell, 1C)	1.75∨	1.00∨		2.50-3.00∨		2.50∨
Peak load current Best result	5C8 0.2C	20C 1C	5C 0.5C	20 <10	>30 C <10 C	>30C <10C
Charge temperature	–20 to 50°C (–4 to 122°F)	0 to 45°C (32 to 113°F)		0 to 45°C° (32 to 113°F)		
Discharge temperature	–20 to 50°C (–4 to °F)	–20 to 65°C (–4 to 49°F)		–20 to 60°C (–4 to 140°F)		
Maintenance requirement	3–6 months ¹⁰ (toping chg.)	Full discharge every 90 days when in full use		Maintenance-free		
Safety requirements	Thermally stable	Thermally stable, fuse protection		Protection circuit mandatory ¹¹		
In use since	Late 1800s	1950	1990	1991	1996	1999
Toxicity	Very high	Very high	Low	Low		
Coulombic efficiency ¹²	~90%	~70% slo ~90% fas		99%		
Cost	Low	Moderate			High ¹³	


Lithium battery shapes and sizes

- 18650
 - 18mm diameter
 - 65mm long

Lithium Cobalt Oxide 3.6V 2.2Ah

+ 18650 2200mAh 3.61

- 26650
 - 26mm diameter
 - 65mm long
- 32650
 - 32mm diameter
 - 65mm long -

LFP 3.2V 3.3Ah

Note: Photos not to scale!

How will you connect the cells together?

I will focus on LFP but the same technique more or less applies for other Lithium chemistries

- What is your nominal operating voltage?
 - Divide that by 3.2V to get number of cells in SERIES
- What is your required Amp-hour capacity?
 - Divide that by cell capacity to give cells in PARALLEL

Example: we need 36V 90Ah for a scooter

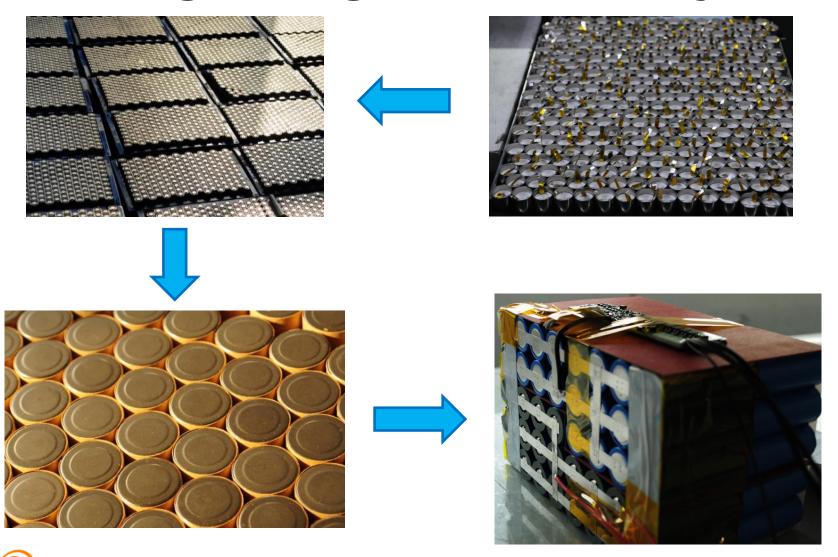
- Nominal operating voltage: 36V
 - Divide 36V by 3.2V = 11.25 cells
 - Can circuit operate at higher or lower voltage?
 - Higher => 12 cells in series
 - Lower => 11 cells in series
 - Since it is a motor, go higher voltage = 12 cells

- Example: we need 36V 90Ah for a scooter
- Require 90Ah
 - 18650 cells come in 1400, 1500 and 1600mAh
 - 26650 cells come in 3000, 3200 and 3300mAh
 - 32650 cells come in 5000mAh only (at this time)
 - Is there a size restriction?
 - No, then select largest cell available = 32650
 - Larger size = higher charging and discharging rate
 - 90Ah divided by 5Ah = 18 cells in parallel

Example: we need 36V 90Ah for a scooter

- 12 cells in series = 38.4V nominal
 - $-12 \times 2.5 \text{V} = 30 \text{V} \text{ minimum (100\% DoD)}$
 - $-12 \times 3.65V = 43.8V$ maximum (just charged)
- 18 cells in parallel = 90Ah

"12S18P 32650 3.2V 5000mAh" battery pack

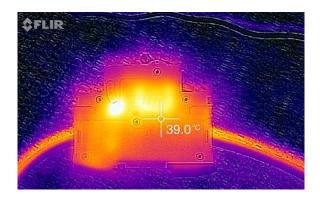


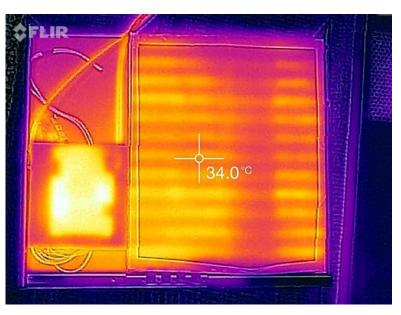
Example: we need 36V 90Ah for a scooter

Single cell charge-discharge characteristics

Example: we need 36V 90Ah for a scooter

- What charging current?
 - 32650 cells can be charged at up to 1C
 - Recommended charge rate C/3 for just over 3 hours
 - 90Ah => CC Charge at 30A for 3.5 hours
 - Or slower at 10A for 10 hours
 - CC/CV => Maximum CV voltage = 43.8V


Example: we need 36V 90Ah for a scooter

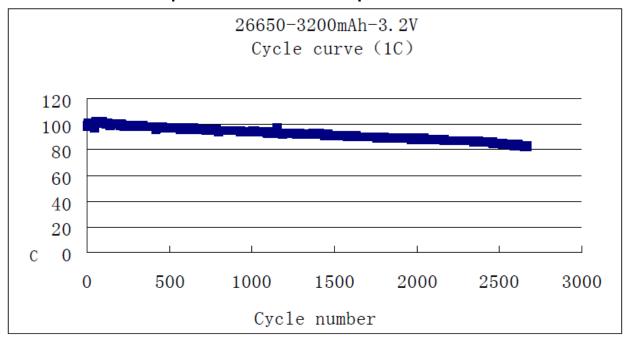

- What working current?
 - 32650 cells can be discharged at up to 5C peak
 - 90Ah => 450A starting current
 - Up to 1C operating current => up to 90A for one hour

Make sure connectors are 'fit for purpose'!!

- Remember I²R losses generate a lot of heat!
 - Interconnections between cells
 - Cables to the load
 - Connector pin sizes

Make sure there is enough space for heat to escape...

Battery Management System (BMS)


- Insurance policy... protects against misuse and abuse:
 - Over-voltage (ie over-charging)
 - Under-voltage (ie over-discharging)
 - Over-current (ie excessive continuous current)
 - Short-circuit (ie fault generated over-current)
 - Over-temperature (eg incorrect usage)
- Monitors each parallel bank of cells continuously for fault conditions

Anticipated battery life – longevity

 High quality LFP battery cells have a minimum life of 2000 charge-discharge cycles

Cycle Characteristic	2000 times	100% DOD, the residual capacity is no less than 80% of rated capacity at 1C rate.
----------------------	------------	---

Anticipated battery life – longevity

 If charge and discharge are managed correctly (eg 70% DoD as with Lead Acid), can expect 6000 cycles of charging and discharging

 That's over 16 years of daily charging and discharging!

Disposal and recycling

 While LFP cells do not contain toxic chemicals, unplanned disposal in Australia is still a concern

Other Lithium chemistries are even worse

- Recycling batteries in Asia is one option
- Opportunity for Australian business

Summary

- Although Lithium batteries have been around for nearly 20 years, the rate of adoption only took off after smartphones became a commodity
- Proliferation of EV and Solar PV systems are driving new requirements and opportunities
- The demand for lightweight, long life and low cost energy storage solutions is going 'gangbusters'
- I personally believe smart, networked and managed LFP based battery solutions will have a bright future
- Coupled with correct energy harvesting, conversion and distribution systems, energy storage will change the world

It's your turn now...

- I have had my chance to talk, it is now your turn to share your questions
- Please post your questions in the TEXT MESSAGES box (left side of Electromeet)
- If you have complex questions, or wish to exchange ideas, we can do this after the session or at a later date
- Please Email me at simon.chan@radlink.com.au

